Abstract Pathologic α-synuclein (α-syn) spreads from cell-to-cell, in part, through binding to the lymphocyte-activation gene 3 (Lag3). Here we report that amyloid β precursor-like protein 1 (Aplp1) forms a complex with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-syn. Deletion of both Aplp1 and Lag3 eliminates the loss of dopaminergic neurons and the accompanying behavioral deficits induced by α-syn preformed fibrils (PFF). Anti-Lag3 prevents the internalization of α-syn PFF by disrupting the interaction of Aplp1 and Lag3, and blocks the neurodegeneration induced by α-syn PFF in vivo . The identification of Aplp1 and the interplay with Lag3 for α-syn PFF induced pathology advances our understanding of the molecular mechanism of cell-to-cell transmission of pathologic α-syn and provides additional targets for therapeutic strategies aimed at preventing neurodegeneration in Parkinson’s disease and related α-synucleinopathies. One Sentence Summary Aplp1 forms a complex with Lag3 that facilitates the binding, internalization, transmission, and toxicity of pathologic α-synuclein. Graphical Abstract Aplp1 and the Aplp1-Lag3 complex facilitates transmission of pathologic α-synuclein. Aplp1 is a receptor that drives pathologic α-syn transmission, and genetic depletion of Aplp1 can significantly reduce the α-synuclein pathogenesis. Aplp1 and Lag3 forms an Aplp1-Lag3 complex that accounts for substantial binding of pathologic α-syn to cortical neurons. Together Aplp1 and Lag3 play a major role in pathologic α-syn internalization, transmission and toxicity. Double knockout of Aplp1 and Lag3 and or a Lag3 antibody that disrupts the Aplp1 and Lag3 complex almost completely blocks α-syn PFF-induced neurodegeneration.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.