Paper
Document
Download
Flag content
1

Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells

1
TipTip
Save
Document
Download
Flag content

Abstract

Abstract RNA velocity has been rapidly adopted to guide the interpretation of transcriptional dynamics in snapshot single-cell transcriptomics data. Current approaches for estimating and analyzing RNA velocity can empirically reveal complex dynamics but lack effective strategies for quantifying the uncertainty of the estimate and its overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show in a series of examples that veloVI compares favorably to previous approaches for inferring RNA velocity with improvements in fit to the data, consistency across transcriptionally similar cells, and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that properties unique to veloVI, such as posterior velocity uncertainty, can be used to assess the appropriateness of analysis with velocity to the data at hand. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.