Abstract The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is raging across the world, leading to a global mortality rate of 3.4% (estimated by World Health Organization in March 2020). As a potential vaccine and therapeutic target, the nucleocapsid protein of SARS-CoV-2 (nCoVN) functions in packaging the viral genome and viral self-assembly. To investigate the biological effects of nCoVN to human stem cells, genetically engineered human induced pluripotent stem cells (iPSC) expressing nCoVN (iPSC-nCoVN) were generated by lentiviral expression systems, in which the expression of nCoVN could be induced by the doxycycline. The proliferation rate of iPSC-nCoVN was decreased. Unexpectedly, the morphology of iPSC started to change after nCoVN expression for 7 days. The pluripotency marker TRA-1-81 were not detectable in iPSC-nCoVN after a four-day induction. Meanwhile, iPSC-nCoVN lost the ability for differentiation into cardiomyocytes with a routine differentiation protocol. The RNA-seq data of iPSC-nCoVN (induction for 30 days) and immunofluorescence assays illustrated that iPSC-nCoVN were turning to fibroblast-like cells. Our data suggested that nCoVN disrupted the pluripotent properties of iPSC and turned them into other types of cells, which provided a new insight to the pathogenic mechanism of SARS-CoV-2.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.