Paper
Document
Download
Flag content
1

Increased demand for NAD+ relative to ATP drives aerobic glycolysis

1
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is a hallmark of proliferative metabolism that is observed across many organisms and conditions. To better understand why aerobic glycolysis is associated with cell proliferation, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase mitochondrial pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the nicotinamide adenine dinucleotide cofactor ratio (NAD+/NADH). This change in NAD+/NADH ratio is caused by an increase in mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling mitochondrial respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when the demand for NAD+ to support oxidation reactions exceeds the demand for ATP consumption in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation despite available oxygen. This argues that cells engage in aerobic glycolysis when the cellular demand for NAD+ is in excess of the cellular demand for ATP.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.