Paper
Document
Download
Flag content
3

Fatty acid metabolic reprogramming promotesC. elegansdevelopment

Save
TipTip
Document
Download
Flag content
3
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Acetylcholine signaling has been reported to play essential roles in animal metabolic regulation and disease affected by diets. However, the underlying mechanisms that how diets regulate animal physiology and health are not well understood. Here we found that the acetylcholine receptor gene eat-2 was expressed in most of the pharyngeal muscles, which is in accordance to our previous report that EAT-2 received synaptic signals not only from pharyngeal MC neurons. The expression of fatty acid synthesis genes was significantly increased in both eat-2 and tmc-1 fast-growth mutants on CeMM food environment, compared to the wild-type. Excitingly, dietary fatty acids such as 15-methyl-hexadecanoic acid (C17ISO), palmitic acid (PA, C16:0) and stearic acid (SA, C18:0) supplementation, significantly accelerated wild-type worm development on CeMM, indicating that the fatty acid synthesis reprogramming is an essential strategy for C. elegans to regulate its development and growth on CeMM diet. Furthermore, we found that fatty acid elongase gene elo-6 knock-out significantly attenuated eat-2 mutant’ fast growth, while overexpression of elo-6 could rescue the eat-2; elo-6 double mutant’ slow development, which suggested that elo-6 played a major role in the above metabolic remodeling. Taken together, our report indicates that diets regulate neuromuscular circuit and modulate C. elegans development via fatty acid metabolic reprogramming. As most of the key genes and metabolites found in this study are conserved in both invertebrate and vertebrate animals, we believed that our results might provide essential clues to the molecular mechanisms underlying interactions among animal nutrition sensation, metabolism reprogramming and developmental regulation. Significance Statement Diets and nutritional composition affect animal development and human health, however the underlying mechanisms remain elusive. We demonstrate that the acetylcholine receptor gene eat-2 is expressed in most of pharyngeal muscles, and the expression of fatty acid synthesis genes is significantly increased in both eat-2 and tmc-1 fast-growth mutants on the synthetic chemical defined CeMM food environment. Dietary supplementation of several fatty acids significantly speed up animal development. Furthermore, we demonstrate that the fatty acid elongase gene elo-6 knock-out attenuates eat-2 mutant’ fast growth, and overexpression of wild-type elo-6 promotes the eat-2; elo-6 double mutant’ slow development. Our findings describe that acetylcholine signaling coordinate nutrition sensation and developmental regulation through fatty acid metabolic remodeling.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.