SUMMARY The preoptic hypothalamus regulates both NREM and REM sleep. We found that calcium levels in mouse lateral preoptic (LPO) neurons were highest during REM. Deleting the core GluN1 subunit of NMDA receptors from LPO neurons abolished calcium signals during all vigilance states, and the excitatory drive onto LPO neurons was reduced. Mice had less NREM sleep and were incapable of generating conventionally classified REM sleep episodes: cortical theta oscillations were greatly reduced but muscle atonia was maintained. Additionally, mice lacking NMDA receptors in LPO neurons had highly fragmented sleep-wake patterns. The fragmentation persisted even under high sleep pressure produced by sleep deprivation. Nevertheless, the sleep homeostasis process remained intact, with an increase in EEG delta power. The sedative dexmedetomidine and sleeping medication zolpidem could transiently restore consolidated sleep. High sleep-wake fragmentation, but not sleep loss, was also produced by selective GluN1 knock-down in GABAergic LPO neurons. We suggest that NMDA glutamate receptor signalling stabilizes the firing of “GABAergic NREM sleep-on” neurons and is also essential for the theta rhythm in REM sleep.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.