Abstract

Abstract Microbes can initiate developmental gene regulatory cascades in animals. The molecular mechanisms underlying microbe-induced animal development and the evolutionary steps to integrate microbial signals into regulatory programs remain poorly understood. In the upside-down jellyfish Cassiopea xamachana , a dinoflagellate endosymbiont initiates the life stage transition from the sessile polyp to the sexual medusa. We found that metabolic products derived from symbiont carotenoids may be important to initiate C. xamachana development, in addition to expression of conserved genes involved in medusa development of non-symbiotic jellyfish. We also revealed the transcription factor COUP is expressed during metamorphosis, potentially as a co-regulator of nuclear receptor RXR. These data suggest relatively few steps may be necessary to integrate symbiont signals into gene regulatory networks and cements the role of the symbiont as a key trigger for life history transition in C. xamachana .

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.