Summary Bacterial evolution is affected by mobile genetic elements such as phages and conjugative plasmids, which may provide novel adaptive traits but also incur in fitness costs. Infection by these elements is affected by the bacterial capsule. Yet, its importance has been difficult to quantify and characterise because of the high diversity of bacterial genomes regarding confounding mechanisms such as anti-viral systems. We swapped capsule loci between Klebsiella pneumoniae strains to quantify their effect on transfer of conjugative plasmids and phages independently of the genetic background. Capsule swaps systematically invert phage susceptibility, demonstrating that serotypes are key determinants of phage infection. Capsule types also affect conjugation efficiency in both donor and recipient cells depending on the serotype, a mechanism shaped by the capsule volume and depending on the structure of the conjugative pilus. Comparative genomics confirmed that more permissive serotypes in the lab correspond to the strains acquiring more conjugative plasmids in nature. The pili least sensitive to capsules (F-like) are also the most frequent in the species’ plasmids, and are the only ones associated with both antibiotic resistance and virulence factors, driving the convergence between virulence and antibiotics resistance in the population. These results show how the traits of cellular envelopes define slow and fast lanes of infection by mobile genetic elements, with implications for population dynamics and horizontal gene transfer. Graphical abstract
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.