Abstract Megaphages – bacteriophages harbouring extremely large genomes – have recently been found to be ubiquitous, being described from a variety of microbiomes ranging from the animal gut to soil and freshwater systems. However, no complete marine megaphage has been identified to date. Here, using both short and long read sequencing, we assembled >900 high-quality draft viral genomes from water in the English Channel. One of these genomes included a novel megaphage, Mar_Mega_1 at >650 Kb, making it one of the largest phage genomes assembled to date. Utilising phylogenetic and network approaches, we found this phage represents a new family of bacteriophages. Genomic analysis showed Mar_Mega_1 shares relatively few homologues with its closest relatives, but, as with other mega-phages Mar_Mega_1 contained a variety of auxiliary metabolic genes responsible for carbon metabolism and nucleotide biosynthesis, including isocitrate dehydrogenase [NADP] and nicotinamide-nucleotide amidohydrolase [PncC] which have not previously been identified in megaphages. The results of this study indicate that phages containing extremely large genomes can be found in abundance in the marine environment and augment host metabolism by mechanisms not previously described.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.