Abstract The human brain is a complex organ underlying many cognitive and physiological processes, affected by a wide range of diseases. Genetic associations with macroscopic brain structure are emerging, providing insights into genetic sources of brain variability and risk for functional impairments and disease. However, specific associations with measures of local brain folding, associated with both brain development and decline, remain under-explored. Here we carried out detailed large-scale genome-wide associations of regional brain cortical sulcal measures derived from magnetic resonance imaging data of 40,169 individuals in the UK Biobank. Combining both genotyping and whole-exome sequencing data (∼12 million variants), we discovered 388 regional brain folding associations across 77 genetic loci at p <5×10 −8 , which replicated at p <0.05. We found genes in associated loci to be independently enriched for expression in the cerebral cortex, neuronal development processes and differential regulation in early brain development. We integrated coding associations and brain eQTLs to refine genes for various loci and demonstrated shared signal in the pleiotropic KCNK2 locus with a cortex-specific KCNK2 eQTL. Genetic correlations with neuropsychiatric conditions highlighted emerging patterns across distinct sulcal parameters and related phenotypes. We provide an interactive 3D visualisation of our summary associations, making complex association patterns easier to interpret, and emphasising the added resolution of regional brain analyses compared to global brain measures. Our results offer new insights into the genetic architecture underpinning brain folding and provide a resource to the wider scientific community for studies of pathways driving brain folding and their role in health and disease.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.