The mammalian tongue is richly innervated with somatosensory, gustatory and motor fibers. These form the basis of many ethologically important functions such as eating, speaking and social grooming. Despite its high tactile acuity and sensitivity, the neural basis of tongue mechanosensation remains largely mysterious. Here we explored the organization of mechanosensory afferents in the tongue and found that each lingual papilla is innervated by Piezo2 + trigeminal neurons. Notably, each fungiform papilla contained highly specialized ring-like sensory neuron terminations that circumscribe the taste buds. Myelinated lingual afferents in the mouse lingual papillae did not form corpuscular sensory end organs but rather had only free nerve endings. In vivo single-unit recordings from the trigeminal ganglion revealed two types of lingual low-threshold mechanoreceptors (LTMRs) with conduction velocities in the Aδ range or above and distinct response properties: intermediately adapting (IA) units and rapidly adapting (RA) units. IA units were sensitive to static indentation and stroking, while RA units had a preference for tangential forces applied by stroking. Lingual LTMRs were not directly responsive to rapid cooling or chemicals that can induce astringent or numbing sensations. Genetic labeling of lingual afferents in the tongue revealed at least two types of nerve terminal patterns, involving dense innervation of individual fungiform papillae by multiple putatively distinct afferents, and relatively sparse innervation of filiform papillae. Together, our results indicate that fungiform papillae are mechanosensory structures, while suggesting a simple model that links the functional and anatomical properties of tactile sensory neurons in the tongue.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.