Paper
Document
Download
Flag content
1

METTL3/MYCN cooperation drives m6A modification during trunk neural crest differentiation and represents a therapeutic vulnerability in MYCN-amplified neuroblastoma

1
TipTip
Save
Document
Download
Flag content

Abstract

Abstract Neuroblastoma (NB) is the most common extracranial childhood cancer, caused by the improper differentiation of developing trunk neural crest cells (tNCC) in the sympathetic nervous system. The N 6 -methyladenosine (m 6 A) epitranscriptomic modification controls post-transcriptional gene expression but the mechanism by which the m 6 A methyltransferase complex METTL3/METTL14/WTAP is recruited to specific loci remains to be fully characterized. We explored whether the m 6 A epitranscriptome could fine-tune gene regulation in migrating/differentiating tNCC. We demonstrate that the m 6 A modification regulates the expression of HOX genes in tNCC, thereby contributing to their timely differentiation into sympathetic neurons. Furthermore, we show that posterior HOX genes are m 6 A modified in MYCN-amplified NB with reduced expression. In addition, we provide evidence that sustained overexpression of the MYCN oncogene in tNCC drives METTL3 recruitment to a specific subset of genes including posterior HOX genes creating an undifferentiated state. Moreover, METTL3 depletion/inhibition induces DNA damage and differentiation of MYCN overexpressing cells and increases vulnerability to chemotherapeutic drugs in MYCN-amplified patient-derived xenografts (PDX) cells, suggesting METTL3 inhibition could be a potential therapeutic approach for NB.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.