Hematophagous ectoparasites, such as ticks, rely on impaired wound healing for skin attachment and blood feeding. Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to arthropod-borne diseases. Here, we used orthogonal approaches combining single-cell RNA sequencing (scRNAseq), flow cytometry, murine genetics, and intravital microscopy to demonstrate how tick extracellular vesicles (EVs) disrupt networks involved in tissue repair. Impairment of EVs through silencing of the SNARE protein vamp33 negatively impacted ectoparasite feeding and survival in three medically relevant tick species, including Ixodes scapularis. Furthermore, I. scapularis EVs affected epidermal γδ T cell frequencies and co-receptor expression, which are essential for keratinocyte function. ScRNAseq analysis of the skin epidermis in wildtype animals exposed to vamp33-deficient ticks revealed a unique cluster of keratinocytes with an overrepresentation of pathways connected to wound healing. This biological circuit was further implicated in arthropod fitness when tick EVs inhibited epithelial proliferation through the disruption of phosphoinositide 3-kinase activity and keratinocyte growth factor levels. Collectively, we uncovered a tick-targeted impairment of tissue repair via the resident γδ T cell-keratinocyte axis, which contributes to ectoparasite feeding.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.