Identifying single-cell types in the mouse brain The recent development of single-cell genomic techniques allows us to profile gene expression at the single-cell level easily, although many of these methods have limited throughput. Rosenberg et al. describe a strategy called split-pool ligation-based transcriptome sequencing, or SPLiT-seq, which uses combinatorial barcoding to profile single-cell transcriptomes without requiring the physical isolation of each cell. The authors used their method to profile >100,000 single-cell transcriptomes from mouse brains and spinal cords at 2 and 11 days after birth. Comparisons with in situ hybridization data on RNA expression from Allen Institute atlases linked these transcriptomes with spatial mapping, from which developmental lineages could be identified. Science , this issue p. 176
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.