Paper
Document
Download
Flag content
0

Matrix Thermalization

Authors
Ben Craps,Oleg Evnin
Kévin Nguyen,José María González Linares,ROBERT ANDRES,Sang Wook Lee,Hazen Russell,MARIA AURORA ARMIENTA,Galinovskiy Andrey,Angus MacKinnon,Nina Konovalova,Вячеслав Терентьев,Thomas McCauley,Vladimir Smirnov,Alan Aitken,Mariusz Wojewoda,Oscar Blasco,Alexander Sevrin,Natalia Kovaleva,Jorge Guillermo Russo,Helena Van Coller,Ernest ILISCA,Maria Teresa Fernandez-Sanchez,Maurício Pietrocola,Osamu Yasuda,Orlando Peres,Rafael Moreno-Vozmediano,Roger Schneiter,Olga Karasik,Trevor Glasbey,Carlos de Carvalho,Joachim Kaiser,Hartmut Gimpel,Alexandre Brea Rodríguez,Kunal Vyas,Diego Regalado,Dragan Bataveljić,Rajesh Dachiraju,James Booth,Dejan Matić,Milivoje Lapčević,Veljko Vlašković,Bojan Urdarević,Zoran Jovanović,Radoje Brković,Emilija Stanković,Milena Petrović,Jelena Vučković,Tamara Đurđić Milošević,Srđan Vladetić,Jovan Vujičić,Sveto Puríć,Marko Slavković,Dragica Živojinović, Dj,Dragan Vujisić,Milan Palević,Božin Vlašković,Peter Wolfsteiner,Sung-Soo Kim,Srdjan Đorđević,Michele Portolan,Garrett Poe,Jelena Nikolić,Laura Ledesma,Jasmina Labudović Stanković,Jelena Eric Nielsen,Katarina Borisavljević,Dejana Zlatanović,Veljko Marinković,Srđan Šapić,Xabier Marcano,Alain Jaccard,Carolyn Dzierba,Ihsan Halifeoglu,Marc Torrens,Benjamin Bellenie,Simone Giacomelli,Suddhasattwa Brahma,Anne Co,Andy Van Brocklin,Song He,Antony Fray,Slađana Savović,Anatoly Dymarsky,Bernard Gagnon,Joseph Fotsing,David Van Wie,Seok Ki Choi,Matti Jarvinen,Vishnu Ram OV,Marie Connett,TE-FANG CHU,Bulent Basol,Diogo Aurélio,Ka Ming Tsui,Bo Feng,Pierre Vanhove,Ian D. Hogg,Valentin V Khoze,kanaka b,Daisuke Kageyama,Anne Smith,Hatem Ltaief,Catia Grimani,Santiago Folgueras,Prateek Agrawal,Nicoline Schiess,Ahmad Jabbarzadeh,Gustavo Alberto Burdman,Marek Jeżabek,wang kunjie,Sergio Angel,Alessia Cedola,Yan Zhao,José Ignacio Morales,Brady Lee,Stefan Fredenhagen,Aude Gehrmann-De Ridder,Isabel María del Águila Cano,Alison Murray,Rafael Maestre,Engel Roza,Deyan Yordanov,Shlomo Sergei Razamat,pallab basu,Linus Wulff,Ehsan Hatefi,Tatsuhiro Misumi,Jian-You Guo,Chengkang Zhang,Adalto Gomes,Jan Pieter van der Schaar,Clare Burrage,Steven Smith,Mª Angeles Egusquiza Balmaseda,Yue-Lin Sming Tsai,Parsa Hossein Ghorbani,Nico Callewaert,Sai Putcha,Riccardo Scateni,Akiyoshi Nakayama,Marinei Lopes Pedralli,Erik Schnetter,Luca Girlanda,Francisco Alonso,Andrew B. Newman,Marco CIRELLI,Arantza Oyanguren,Alex Gomes Dias,Daisuke Yamauchi,Amol Upadhye,Poonam Mehta,Yu-Xiao Liu,Christoph Englert,Nicole Bell,Partha Konar,Sanjeev Seahra,Camilo Rindt,David Mitchell,Ronnie Andersson,Paul Heslop,Daniel Thompson,Constantinos Papageorgakis,Alexander Smirnov,Florence Mahuteau-Betzer,Tommi Alanne,Daniel O'Keefe,Danning Li,Martin Brodsky,Niko Jokela,Roberto Avendaño,Gianguido Dall'Agata,Vincenzo Levizzani,Sinisa Vidovic,Aleksandr N. Ignatov,Valerie Domcke,Rintze Zelle,amin salehi,Matthias Niessner,Chethan Krishnan,Andre Lessa,Maxim Kozlikin,Jacobo Lopez Pavon,Hoda Ali,Laura Andrianopoli,Antonio Amariti,Mohammad Hossein Namjoo,Alberto Mariotti,Yuichiro TADA,Dmitry Vichuzhanin,JOSE FRANCISCO DE ASSIS DIAS,Piotr Edelman,Filippo Sala,Jindřich Bečvář,Ewa Piwowarska,Zahid Zakir,S. Prem Kumar,robert de mello koch,Gonzalo Torroba,Dionysios Triantafyllopoulos,Thomas W Shield,Mark Baker,fabio de rensis,Lumi-Pyry Wahlman,Philipp Mertsch,Layne Price,Idoia Rosales,Vladimir Gabrinets,Larisa Stepanova,Ivan Jordanov,Syksy Räsänen,Máximo Pló Casasús,Stefan Hohenegger,Adhimar Oliveira,Hiroshi Yokoya,Pawel Caputa,Chirag Bhatt,Christopher McCabe,Max Langbein,Dirk Witthaut,Giuseppe Dibitetto,Deepak Gajanana,KAZUO HOSOMICHI,Arman Esmaili,Jenny Tillotson,Kirill Pavsky,Yoshiharu Takayama,Diego Trancanelli,Robert Stankey,Roberto Quadrini,David Pirtskhalava,Xiaoli Lu,Małgorzata Szpilska,Ivana Truccolo,David Mateos,Tiago de Jesus Sousa,Maresuke Shiraishi,Iñaki García Etxebarria,Vladimir Popov,Nicola Tamanini,Xun Zhu,Navid Ghavi Hossein-Zadeh,Jingwu Duan,Ivo de Medeiros Varzielas,PIERO MALGUZZI,Torsten Bringmann,Bartosz Grzegorz Sołowiej,Eleonora Ringler-Pascu,Lara Guedes de Pinho,Seung J. Lee,Eero Vainikko,Iryna Radziievska,Takahiro Ueda,Anton de la Fuente,Iason Baldes,Shalender Singh,Gim Seng Ng,Jiaju Zhang,Jose Zurita,Karla McGregor,Pasquale Di Bari,Horatiu Nastase,Troy McMullin,Andrea Doris Kupferschmid,Gherardo Vita,Cibrán Santamarina Ríos,Dean Sumic,Lukas Arnold,Gopolang Mohlabeng,Simon Caron-Huot,Dannii Yeung,Kevin Eboigbodin,Alejandro Ruiperez,Ching-Lien Hsiao,Jacob Bourjaily,Ryosuke Sato,Josef Kainz,Peter Millington,igor pesando,Tomáš Gřivna,Stefano Di Chiara,Sandra Kvedaraitė,Luca Marzola,Evgeny Skvortsov,Sayantan Choudhury,zain saleem,Michele Lucente,Jakub Kvapil,Paul Peter Cook,Yusuke Yamada,Kazuki Sakurai,Jack Setford,William Emond,Johannes Albrecht,Sibylle Driezen,Motoi Endo,Yutaka Matsuo,Yi Pang,Alexandru Catalin Ene,Kiel Howe,Jorge Norena,Jere Remes,Andrea Puhm,MATTHEW DOLAN,Earl Bardsley,Daniel Blaschke,Norihiro Tanahashi,Hai Siong Tan,Willy Fischler,Janusz Kapusniak,Nicolò Petri,Meng Fai Lim,Jean-Pascal Bergé,Antonella Pasquato,Bliss Cunningham,Adar Sharon,Carlos Henriques,Taro Kimura,Dan Seidov,Patricia Dias,Yuan Zhong,Yi Wang,Juan F. Pedraza,Barbara Mathews,Luiz Carlos Kucharski,Sérgio MO Tavares,Jérémy Anquetin,Thiago Pereira,Dr. Saleem Iqbal,Antonio Racioppi,Larry Berg,Serap Gultekin,Supriya Chakrabarti,Sonia Garcia,Miguel Figueiredo,Алексей Новиков,Paul Willis,Hongliang Jiang,Sreenath Vijayakumar,Olga Plotnikova,Timothy McKnight,Massimo Taronna,Ольга Горюнова,Francisco José Aranda Pérez,Yashar Akrami,Devon Greyson,Александр Кириллов,Mario Ballardini,Admir Greljo,Gonzalo Palma,Tiziana Trombetti,L. Sriramkumar,JOSE ALBERTO RUIZ CEMBRANOS,Otto Monge,Brent Valle,Jason Veatch,Fabrizio Nesti,Darko Prebežac,Alexey Koshelev,Mónica Aguilar-Alba,Ruth Eriksen,Otávio Coaracy Brasil Gandolfo,Hooshyar Assadullahi,Diana White,Jolanta Bojarszczuk,Jibitesh Dutta,Jacob Holm,Francesca Calore,Rita de Cassia dos Anjos,Phornphop Naiyanetr,Ge Peng,ALEKSANDR KHODINOV,Marcin Wodziński,Oliver Piattella,Mattia Manfredonia,Stanislav Chuprakov,Rudranil Basu,Aurelio del Portillo García,Vincenzo Cavaliere,AKHILA MOHAN,Arianna Jakositz,Lorenzo Bordin,Titouan Lazeyras,Liliya Nakashydze,Сергей Кулабухов,Hüseyin Şahin,Protsiv Volodymyr,Raul Mur-Artal,Gizem Şengör,Debika Chowdhury,Stefanie Klenow,Kasey Legaard,Nehal Gamal,Ilya Blinov,Clement Levallois,Jason Pine,Christopher Couzens,Elizabeth Sim,Сергей Ильин,Taylor Turner,CARMEN BONASERA,Hyunjae Daniel Shin,Muhammad Mudasar Saqab,Colin Kruse,UGAITZ GAZTELU ONAINDIA,Lynne Lafave,Dan Řezníček,Edgardo Mejía Roa,Brian Geist,Ashish Kumar Katiyar,Izabela Skomerska-Muchowska,Jingya Zhu,Mohammed Moussa,Mohammad Raqibul Hasan Siddique,Edilson de Carvalho Filho,Naoya Kitajima,Olga Rodrigo Pedrosa,shaojie chen,Juliana Stracieri,Ēriks Treļs,Mikhail Denissenya,Claudia Krull,Vladimir Uspenskiy,Jean-Sebastien Pelletier,Sheila Gutiérrez López,Daniele Marangotto,Paul Lemieux III,Melissa Fernandez,Charif BENBOULAID,Kinjal Banerjee,Elena Ryabova,FREDY ROBERT ROSAS CULCOS,Pierre Bourdin,Igor Areh,Faa-Jeng Lin,Caner Unal,Angela Carter,DOGAN TUTAK,Edith Lara-Carrillo,CÉSAR AUGUSTO RANILLA FALCÓN,Keith Williams,Ying Zhang,Jessielem Soares ribeiro,Cristina Polito,Vladimir Kirilin,Maria Grazia NACCI,N/A ,Nora Ramtke,Magnus Strandh,Rafael Larrosa Jiménez,Casey Kennington,Eirh-Yu Hsie,Germán Quijano Mena,Fei Wang,Levon Vladimirovich Batiev ,Kateřina Matějková,Valeri Vardanyan,Eric Kuo,Crist´ovão Rodrigues,Fabiana Kneubil,Julio Dutra,Jun-Ping Du,Ilderlane da Silva Lopes,Randy Agra Pratama,Vladimir Vereshagin,Melissa Zweng,Deivys Joel Pérez Chuquihuanca,Elena Gordina,Edwin Herrera,Adnan Adnan,Вячеслав Козоброд,MICHELE LOIZZI,A.D. Degtyareva,Rishi Baral,Alejandra Ramm,Şükrü Arslan,Michael Tanner,Elena Mercedes Perez-Monserrat,FRANCOIS BROQUEDIS,Paolo Martano,VICTOR MANUEL OLMEDO VAZQUEZ,Ashish Narang,Georgi Kadikyanov,Pedrom Jordão,Fernando Moreno,Madawa W Jayawardana,Pedro Augusto Tibúrcio Paulino,Dario Rosa,Dr. Iahtisham-Ul-Haq ,Jasbir Singh,María Jose Legaz,Julian Rode,Rimma Akhmadullina,Michael Faley,Andrew Abbo,Julie Merkle,Martín Eliseo Tamayo Ancona,Martin Aumüller,Davide Gualdi,Ana Carolina Souza,Virginia Romero Plana,Andrzej Rutkiewicz,MARIA PILAR DIEZHANDINO,TATIANA MARIA ANTONIA COSSU,Radek Votrubec,TSUNEHIRO HATO,Mélanie Le Barz,James Alvey,Camila Novaes,Daniel Hepperle,Joaquin Bastias,Adrian Adascalitei,Manuel Velázquez,Manuel Donaire,David Mesterhazy,David Cabrera-García,Agnieszka Berdowska,Kun Wang,João Morais,Nihal Batouty,Ferenc Siklér,Maria da Encarnação Marcelo,Trevor E. Carlson,Juldyz Smagulova,Damião da Cunha,Adriana Antonieta Romero Sandoval,Michael Wagner,NGUENA CHRISTIAN LAMBERT,Francesca Martinelli,Caleb Tse,Taiga Kunishima,Miguel Borja,Alessandro Decarlis,Edgar Neri Castro,Jean-Etienne Fabre,Christophe Rey,Jan Rehor,Kostas Sagonas,Iliana del Carmen Sanmartín-Rojas,shaun tanger,Adil Adatia,Julio C. García-Martínez,SHIPRA GUPTA,Jesús Antonio Camarillo,AHMET AKGÜL,Rui Zhu,Agata Buchwal,R. Jonathan Robitsek,Jose Halim Montes de Oca Yemha,Carolina Gutstein,Daniele De Sensi,Shahid Iqbal,Mustafa Tareq,Mohammad Ebrahim Rezvani,Nils Myszkowski,Raul Sales,HSIANG-KAI DONG,Marta Skiba,Angela DE PALMA,Bernardo Amigo,Serra Topal,Loredana Verdone,Warren Gumbley,Sara María Torres Outón,Roger Davies,Fernando Morenoa,Nicola Martin,Ruyman Reyes,Nathália Gonçalves Zaparolli,Eric Kort,Cezar Gaman,Ayşem Kaya,HASAN BACANLI,ANAI YAH TUZ,Andreea Koreanschi,Gérard Poitras,Filippo Donna,James Xue,Ana Bela Nunes,Odelkis Vázquez González,Gabriel LaPlante,LUIS BRITO-GAONA,Raquel de la Cruz Soriano,Kris Christmann,ISRAEL MORENO-MEJIA,Kirill Semenov-Tian-Shansky,Ann Marie Clark,William Serrato,Stefanie Senger,Scott Reza Jafarian Kerman,aweke shishigu,Markus Didion,Ben Ruijl,Ana María Navarro Casillas,Niels de Hoon,Bruno Guillon,Heitor S. Ramos,Marija Molan,Irina Gasilova,Emerson Izidoro dos Santos,Thaís Cyrino de Mello Forato,Magdalena Wiśniewska-Drewniak,Anna Grygier,Frank Löffler,John de Bono,Carolina Fernanda Gartner Restrepo,Gisleine Coelho de Campos,James Reagan,Huseyin Oz,Nicholas Kiggundu,Fabrizio Caola,Renata Barczynska,Toshiya Takami,Eike Falk Anderson,Raghunayagan Parameswaran,Hernán Alfredo González Leiva,Marwa Elbyaly,Roddy Brett,Amparo Sánchez Cobos,Jennifer Ogilvie,Iskander Yarmakeev,DARIO DELL'OSA,RAJARATNAM RAMESHSHANKER,Amin Safavi,Love Börjeson,Francisco Javier Corbera Peña,dongdong qin,Hodjat Mariji,Ahmet Yildiz,Meegan Kennedy,Juliana Jaramillo-Jaramillo,Laura Prichard,Bahareh Kamranzad,Robert Speck,TAKASHI KUBOTA,Mauricio Loyola,Kelsie Dadd,Matthew Power,Joshua Holden,Jean-Philippe Gourdine,YOSHIHIRO IIJIMA,Rafael Asenjo,Ruben Martinez-Cantin,Gianguido Cossellu,Liliana Maltagliati,Manuel Garcia-Piqueras,Gamaliel Castañeda,Daniel Vitales,GIUSEPPE PAPUZZO,Nikolaj Petrov,Bart Nieuwenhuis,Abdellah Elfeky,Raida Ben Salah,Tien-Chin Tan,Jacek Hulimka,Nuray Voyvoda,DK SINGH,Andrey Fedorov,Haftay Hailu Gebremedhn ,Nedžad Rudonja,Yana Sergeeva,Jeffrey Buyer,Milton Schivani,MARINO NAVAZO,Natasa Honzikova,David Lester,Sarah N. Lim Choi Keung,Cathy Hollis,Katarzyna Skrzypczak,Andreas Galonska,Mario Lillo-Saavedra,André Marques,Rafał Lizut,Samantha McDonnell,Risto Vehmas,Javad Taghizadeh Firouzjaee,Gonzalo Miguez,Guillaume DUFLOS,Angeles G. Navarro,Isabel Cristina Flores Rueda,sada Alyasri,Olumide Ajibola,Maria Elena ROCCIA,Pedro Cruz-Hernandez,Carlos Shahbazi Alonso,Bumsoo Han,Roberto Granados Porras,parviz shahabi,Jérémy Neveu,Alexey Mishonov,Olof Steinthorsdottir,David Hayes,Shokoufeh hajsadeghi,Virginia Karina Rosas Burgos,Mario E. Gomez,Andreas Recknagel,Jesus Garcia-Crespo,masahiro hizume,Alessio Ferrari,Matteo Manzali,Ismeli Alfonso,Carmen Gallego Vega,Walter Yamada,Lisa Sanders,Pere Gironella Gironell,Daniele Pistone,Martin Křížek,Anna Runemark,Mario Renato Cépeda Cáceres,Golam Hossain,Christopher Hollings,Irina Trofimova,Jens Mergenthaler,Jason Otkin,Kaiyou Wang,Danijela Marovic,Fumitake Nishimura,Shanmukhappa Angadi,Sebastian Bysiak,Ran-Zan Wang,Caterina Ripa,Alberto F. Martín,Chris Hughes,Wee Chen Gan,Nuno Teixeira Tavares,Rosario Gonzalez-Ferez,Andre Schneider,Gulińska Hanna,Nicholas Lam,Chi Chung Chan,Billy Makumba,Raisa Ionin,Tetiana Orlova,Roberto Saglia,Chiara Pinto,Pascal martin,Albert Isidro,Maria Mrówczyńska,Yucel Severcan,Nihal Buyukcizmeci,Francois Lanusse,Micaela Caserta,Kevin Davidson,Heli Viiri,Alan Hogg,Arlette Bochud,David M Freire,Jose Ignacio Gomez,Anxela Bugallo-Rodríguez,RENATO BUZIO,Takanori Horii,Miguel Gomez-Heras,Sunil Kulkarni,cuneyt kocas,Jens Ilg,Florian Niebling,Sunny Vagnozzi,Mihkail Milyaev,Nicola Cicero,Jakub Godlewski,Luís Pimentel,Max Chavarría,Yves Carlier,Nikolay Arefiev,Antonio Claret García Martínez,Elsa Gladys Aguilar Ancori,Juan Gómez Luna,Luis Sequeira,Jedrzej Drozdowicz,Karol Wysokiński,Andressa de Souza Pollo,Giuseppe Firpo,Mirosław Tyl,Hector Migallon,Rocco Servidio,Chad Lin,Jose Luis Vazquez-Poletti,Satoshi Takeuchi,karteek guturu,Stefano Andreon,Yutaka Watanuki,Tyanai Masiya,Katerina Nedbalkova,Anna Malashicheva,Armando Bernui,ANDREA MARCHETTI,hanna serkowska,Johannes Glodny,jackson cooper,Raphael Proulx,andrea molinari,leonardo Ribeiro Eulalio Cabral,Ehab K. I. Hamad,Bruce Nicoll,Zhien Wang,Luís Nogueira,Barbara Renner,Laura Gallardo,Bryan Tolson,Beatriz Álvarez-González,Catarina Castro,Peter Grimminger,Natalya Gordina,Igor Camargo Fontana,Efstratios Valakos,Toshiaki Takezawa,Yiannis Giannakopoulos,Leonardo Fabio Martínez Pérez,Daniel Sacristán,Urs Treier,Patrick Martineau,Vadim Menzhulin,Jonas Kindberg,Herrera Zendejas Esther,Markus Geimer,Gisela Pujol,Gabriela Besler,Anastasiya Maricheva,Kirsten Hvenegård-Lassen,Vanessa Hannesschläger,Rohit Gupta,ANTONIO LOPEZ MAROTO,Gotzon Gangoiti,Hlib Prib,Pawel Kopciewicz,Stephanie Brichau,Ali Unal Sorman,Martin Henk,Eric Jellen,Antonio Bossio,MARIA POOL,Magda Semedo,Rita Martins de Sousa,Xosé A. Armas Castro,Patricia A. Jennings,MONICA ALVAREZ,Gesine Reinert,Oriane Hidalgo,Genly Leon,Anna Celczyńska,Bruna Sinjari,Jose Luis Solaun-Bustinza,Murat Kazim Ersanli,antonio enea romano,Alexey Boldarev,Abdeslam Mimouni,Maria Regina Menino,Anna Lim,Jonathan Blazek,Antonello Novelli,Joy Porter,Luciano Mule'Stagno,Murray Elder,José António Souto Cabo,Małgorzata Kaczmarska,Amitava Chattopadhyay,Wenran Feng,Laila C. Roisman,José Gracia,Shigeyuki Ishidoya,Eliane Ferreira dos Santos,Roman Czyba,Kamila Myszka,Alfonso Serrano-Maillo,Marie Mirouze,Ryan Ceddia,Priya Kurian,Ireneusz Stefaniuk,Rui Brás,Renate Egan,Heikki Hirvonen,Héctor Bracho Espinoza,Małgorzata Anna Majcher,Dong Jiang,Ariosto Medina,Dacia Viejo-Rose,Zafeiris Kokkinogenis,kalina burnat,Marek Wójtowicz,María Rebeca Padilla de la Torre,Ulla Susanna Tuomarla,Andrew Kei-Yan Ng,Alexander Nicoletti,Dr. Raffaello Furlan,Johannes Foufopoulos,Pietro Fecchio,Kelvin Tsun Wai Ng,Vitor Rafael Coluci,Dmitry Serebryakov,Alfred Anwander,Stefano Testa Bappenheim,Irina Garcia-Ispierto,Antonio del Sol,Bernard Pochet,Qingyu Ma,Tanglaw Roman,Mariya Gubareva,Guosheng Xu,Anna Lewandowska,Didier Rémond,Debashish Munshi,Bertrand PEROT,Thomas Eickermann,Karl Meerbergen,Sergey Gilev,Juan Antonio Rodríguez Díaz,Grian A. Cutanda,Carlos Garcia Sanchez,Cedric Lorce,Juan Rafael de la Haba Rodríguez,Patrick Steinmetz,Fernando Heredia Sánchez,Margherita Giustini,Georg von Arx,Sharifa Ezat Wan Puteh,Minna Väilä,Valentina Mussi,Hans Peter Söndergaard,Subrata Hait,Ming Zeng,Yuri Kotelevtsev,Elizabeth Hanna,Yasin Taşpınar,Michal Nedělka,amani taamalli,Andrea Sanchini,Mieczyslaw Szalecki,David Randall,Jiangbo Yu,Angelina Kaleta,Sophie Desroches,Dave Cliff,Richard Ellis,Vanda Faria dos Santos,Patrick McCann,Loko Yêyinou Laura Estelle,Antonio Torres,Jesus Garcia-Donas,Carla Costa,Adam Szabelski,Albert Ellingboe,Tatiana Suárez,Luiz Eduardo Oliveira,Krzysztof Meissner,Evgenii Shmanin,Daniel Dąbrowski,Jaume Pellicer,Ignacio Martin Llorente,Rosa M Badia,Elisa Mele,hongwu liu,Jose Angel Garcia-Saenz,Sławomir Jabłoński,Sian Sullivan,Maurizio Abeti,John Castellani,Patrick Sandoz,Eduard Malev,Warrick Dawes,Paul Gibbon,Petri Kärhä,Steven Ackerman,KOICHI HAMAGUCHI,Paul Richmond,Srinivas Gadipelli,Jane Hodgkinson,HECTOR CARREON,Mireia Morgades,Isao Inoue,Lei Xia,Shuichi Kurabayashi,Miloš Vujisić,Sheng Wang,Marija Pavlović,Dragana Pavlović,Antonio García Hernández,Carlo CORINO,Laurence Bernard,Tsiu-Kwen Lee,Shamil Maksyutov,Rob Butler,Rafael Fort,Filipa Raimundo,Damer Blake,Manuel Prieto-Matias,Erling Andersen,Lorcan Dempsey,Georgy Sofronov,Isabel Paula,Vasilis Strogilos,wenjun ma,Vladimir Babenko
+990 authors
,SARAT KUMAR DAS
Journal
Published
Oct 17, 2016
Show more
Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content
Matrix Thermalization
Ben Craps a, Oleg Evnin b,a, K´evin Nguyen a
a Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and
International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium
b Department of Physics, Faculty of Science, Chulalongkorn University,
Thanon Phayathai, Pathumwan, Bangkok 10330, Thailand
Ben.Craps@vub.ac.be, oleg.evnin@gmail.com, Kevin.Huy.D.Nguyen@vub.ac.be
ABSTRACT
Matrix quantum mechanics offers an attractive environment for discussing gravitational
holography, in which both sides of the holographic duality are well-defined. Similarly to
higher-dimensional implementations of holography, collapsing shell solutions in the gravi-
tational bulk correspond in this setting to thermalization processes in the dual quantum
mechanical theory. We construct an explicit, fully nonlinear supergravity solution describ-
ing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions
necessary for computing the relevant boundary observables, and apply them to evaluating
thermalizing two-point correlation functions in the dual matrix theory.
arXiv:1610.05333v3 [hep-th] 13 Feb 2017
Contents
1 Introduction 1
2 Review of IIA Supergravity - Matrix Theory Duality 5
3 Dimensional Reduction of IIA Supergravity 8
4 Holographic Renormalization 10
5 Retarded Boundary-to-Bulk Propagators 13
6 Linear Response in Matrix Theory 17
A Details of the Dimensional Reduction 19
B Derivation of General Background Solution 21
C Bulk Field Asymptotics 23
D On-Shell Evaluation of the Action 26
E One-point Functions 27
F Boundary-to-Bulk Propagators in Vacuum AdS2 28
G Lowest Quasinormal Modes 30
G.1 Universality of Frequency-to-Temperature Ratio . . . . . . . . . . . . . . . . 30
G.2 Frobenius Expansion Near the Horizon . . . . . . . . . . . . . . . . . . . . . 31
G.3 Numerical Shooting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1 Introduction
In recent years, gauge/gravity duality, also known as “holography,” has emerged as a rare
tool for the study of strongly coupled systems far from equilibrium. Originally motivated by
the creation of a quark gluon plasma in ultrarelativistic heavy ion collisions, many authors
have used the AdS/CFT correspondence to study what happens when energy is suddenly
injected in a strongly coupled quantum field theory. Interesting results include thermaliza-
tion times short enough to be compatible with experiments [1–10], a thermalization pattern
in which short-wavelength modes thermalize first [7, 11], and new insights in the spreading
of entanglement entropy after a 1+1d quantum quench [5, 7, 12–14].
It is interesting to ask whether holography can be used to make predictions for the ther-
malization of systems that can also be studied using conventional techniques. If so, this
would provide a framework in which holography can be quantitatively tested in a far-from-
equilibrium regime. With this question in mind, we will study holographic thermalization
1
in BFSS matrix theory [15, 16], a quantum-mechanical model of N × N matrices which,
in the N → ∞ limit, has been proposed as a nonperturbative definition of M-theory in
asymptotically flat backgrounds [16]. Our considerations will revolve around the relation
of this model [17] to a non-conformal version of the AdS/CFT correspondence [18–21]. It
has also appeared in recent discussions of “fast scrambling” [22], the fast spreading of in-
formation that is added “locally” (e.g., in one matrix component). While our focus will be
on far-from-equilibrium processes driven by energy injection, a simpler holographic setup
involving the same matrix theory has been previously studied, in a way involving extensive
numerical simulations, in a sequence of papers including [23–28]. In those considerations, a
stationary black hole was introduced in the gravitational bulk, corresponding to thermody-
namic equilibrium, rather than thermalization, in the dual matrix theory. Further analytic
considerations of matrix theory thermodynamics can be found in [29, 30]. In [31, 32], dy-
namics of moduli fields has been explored as a tool to probe thermal properties of higher-
dimensional super-Yang-Mills theories, though applications to the case of matrix theory are
less straightforward.
Despite the apparent simplicity of the BFSS matrix theory, which involves quantum
mechanics rather than quantum field theory, real-time evolution of this model in the ap-
propriate strong coupling regime presently appears to be out of reach of conventional tech-
niques, even for small values of N . The nine scalar matrices and their fermionic partners
contain too many degrees of freedom to allow direct diagonalization, and the interactions
between the various matrix elements appear to be too nonlocal for variational techniques
such as tensor network methods to be directly applicable. It would be really nice if these or
other techniques could be developed up to the point where they can capture matrix theory,
first for small N and later for larger values of N , in order to allow detailed comparison
with holography. (We would like to mention an intriguing attempt to tackle the quantum
dynamics of a simpler bosonic matrix theory undertaken in [33].) In the meantime, nu-
merical simulations have been carried out in another regime, where the matrix theory can
be treated classically [34–36]. (A similar study of the related BMN matrix model can be
found in [37].) This is a simplification which would not arise in higher dimensions; see [36]
and references therein. One motivation is that, according to numerical simulations, there
is no phase transition between the different regimes [23–28], so some qualitative features
can be expected to be similar [36]. Further studies of semiclassical processes in the matrix
theory revolving around the idea of continuity from weak to strong coupling can be found
in [38, 39].
In this paper, we use D0-brane holography [18–21] to study far-from-equilibrium evolu-
tion of matrix theory after a sudden injection of energy. In higher-dimensional AdS/CFT,
a simple way to inject energy in a holographic field theory is by briefly turning on and off a
homogeneous source, for instance for an anisotropic component of the stress tensor [3], for
an electric current [40] or for a scalar operator [41]. In the bulk, this corresponds to turning
on nontrivial boundary conditions for the corresponding bulk field. For a small-amplitude
scalar perturbation, an approximate AdS-Vaidya spacetime was found [41], and this has
become an often-used toy model for homogeneous, isotropic energy injection. Interestingly,
the electric field perturbation of [40] yields an exact AdS-Vaidya spacetime.
2
For D0-brane holography, if one restricts to an ansatz that is spherically symmetric in
the “internal” directions (transverse to the D0-brane worldvolume), the supergravity field
equations simplify to those of a dilaton-gravity model [20, 21] coupled to an additional
scalar (the “breathing mode” of the internal sphere) [20]. We will explicitly solve the
dilaton-gravity equations (with the breathing mode set to zero) with an arbitrary boundary
profile for the dilaton (corresponding to an arbitrary source for the dual operator). As a
consequence of the lack of dynamical degrees of freedom in 2d dilaton-gravity, if one turns a
source on and off, the late-time bulk metric agrees with the early-time bulk metric, and no
net energy was injected. We will find, however, that one can inject energy in the system by
considering a boundary condition for the dilaton that is constant at early times and evolves
to a different constant value at late times. In field theory language, this corresponds to
starting with a thermal state and ending with a thermal state at a different temperature
(and with a different value of the coupling constant).
Concretely, in Appendix B we derive the following exact analytic solution of IIA su-
pergravity, expressed in a dual frame in which the 2d metric is asymptotically AdS (see
Section 2, where more details will be provided):
ds2
dual = 1
x2
[
2 dvdx +
(
1 + 20
21 ˙φ(0)(v) x M0 e4
3 φ(0)(v)x14/5
)
dv2
]
+ 25
4 d2
8, (1)
φ(v, x) = φ(0)(v) + 21
10 log x, (2)
where M0 is a mass parameter and φ(0)(v) is a function that one is free to choose as Dirichlet
boundary condition for the dilaton field φ and which we also call dilaton source. The metric
(1) describes a black hole with mass M = M0 e4
3 φ(0)
and is asymptotically AdS2 × S8 for
x 0, where the timelike boundary of AdS2 is located. Provided that we have M0 6 = 0, a
non-constant dilaton boundary value φ(0)(v) will effectively result in a non-constant mass
term in the metric.
Even though the above collapsing solution allows arbitrary energy injection patterns,
in this paper, we will mostly consider the thin-shell limit in which a black hole spacetime
of some initial temperature is glued to a black hole spacetime of higher temperature at a
null surface v = v0. This can be achieved by assuming the following profile for the dilaton
source:
v < v0 : φ(0)(v) = φ0, (3)
v > v0 : φ(0)(v) = 0, (4)
with φ0 a negative constant. For computational simplicity, we will often consider the
φ0 → −∞ limit in which the initial temperature vanishes and the early-time geometry is
vacuum AdS2:
v < v0 :
{
φ(0)(v) → −∞,
˙φ(0)(v) = 0, (5)
3
v > v0 : φ(0)(v) = 0. (6)
At least within an energy range to be discussed in the next section, this solution is
holographically dual to matrix theory excited (“quenched”) away from equilibrium through
energy injection. However, the solution (1)-(2) does not describe propagating degrees of
freedom and will not be sufficient for computing non-trivial correlation functions. As a
dynamical probe of this background, we then consider fluctuations in the size of the compact
S8, i.e., the breathing mode. This mode has already been considered in previous holographic
works [19,20] and has been identified in [19] to be dual to a matrix theory operator T −−, to
be defined in (35), by matching of generalized conformal scaling dimensions [42–44]. Our
setup will allow us to holographically compute its retarded two-point correlation function
in the quenched dual state, thereby providing a first non-trivial observable which, in the
future, one may hope to compare with direct matrix theory computations. Predictably,
the late-time behavior of this correlation function is dominated by the lowest quasinormal
mode of the final state black hole.
AdS2 holography has a reputation for being very subtle and relatively poorly understood
(see [45–52] for a sampling of the literature, with an emphasis on recent discussions), so one
might wonder why we did not run into problems when considering AdS2 backgrounds and
excitations thereof. To see the difference between our D0-brane holography and what is
usually referred to as AdS2 holography, note that our AdS2 solution arises in the dual frame,
in which the effective dilaton-gravity action takes the form (43) with constant b = 25/4.
This action has a nontrivial dilaton kinetic term, the removal of which would require a
dilaton-dependent rescaling of the metric. After such a rescaling, the metric would no longer
be asymptotically AdS2. This should be contrasted with conventional AdS2 holography,
which considers asymptotically AdS2 solutions in the frame without a dilaton kinetic term,
which turns out to be more subtle. More specifically, subtleties such as the absence of finite-
energy excitations for fixed asymptotics arise for AdS2 solutions with constant dilaton.1 In
the theory we are considering here, the dilaton field depends at least on the radial coordinate
for all solutions of the equations of motion, and holography works in a way similar to the
running dilaton solutions considered in [52].
The paper is organized as follows. In Section 2 we review the duality between matrix
theory and IIA supergravity originally conjectured in [18], setting thereby the conventions
that are going to be used throughout this work. In Section 3, we study the bosonic part
of type IIA supergravity with asymptotically AdS2 × S8 geometry in the dual frame. In
order to simplify the problem as much as possible, we only consider spherically symmetric
solutions, leading to a two-dimensional effective theory describing the metric, the dilaton
and the breathing mode accounting for the S8 size dynamics. This mode is the only prop-
agating physical degree of freedom in that system, and will be our probe for computing
non-trivial correlations functions in the quenched dual state. It is important to note that
the breathing mode cannot be considered nonperturbatively as noted in [20], because it
deforms the boundary away from AdS2 (see Appendix C). In terms of matrix theory, its
1We thank Ioannis Papadimitriou for a useful discussion on this point.
4
dual operator T −− is irrelevant and cannot be sourced nonperturbatively. Nonetheless, a
proper perturbative treatment of the breathing mode is expected to correctly reproduce the
correlation functions of the dual matrix theory operator [20,53]. In Section 4 we perform the
holographic renormalization procedure [54]. Knowing the fields’ asymptotics near the AdS2
boundary as well as the on-shell effective action, local boundary counterterms are added
in order to cancel boundary divergences. This is part of the precise holographic descrip-
tion of matrix theory. In earlier works holographic renormalization has been performed
for various cases, including non-linear gravity-dilaton solutions [21] and breathing mode
perturbations around pure AdS2 × S8 [20]. Related work also includes [55]. A general dis-
cussion of holographic renormalization in the presence of irrelevant operators deforming the
AdS boundary can be found in [53]. Here we consider breathing mode perturbations around
non-linear gravity-dilaton background solutions, allowing in particular for time-dependent
backgrounds of the form (1)-(2).
In Section 5 we compute the retarded boundary-to-bulk propagator of the breathing
mode in the case of pure AdS2 and in the more interesting case of the thin-shell solution
(1)-(6), which is dual to a quenched state in matrix theory. For the retarded propagator
in the latter case, we use numerical evolution and show that its asymptotic value near the
boundary is rapidly dominated by a single decaying and oscillating mode after crossing of
the shell located at v = v0. We also show that the associated single complex frequency
dominating the retarded two-point function in this quenched state with final temperature
T coincides with the lowest quasinormal mode frequency of breathing mode fluctuations
around a static black hole at the same temperature T . The first and second quasinormal
mode frequencies are therefore computed in Appendix G using a numerical shooting method.
Using these results, we holographically derive in Section 6 the retarded non-equal-time
two-point function of T −−. Earlier computations of holographic two-point functions in
equilibrium states (as opposed to our far-from-equilibrium setting) can be found in [19, 56,
57].
2 Review of IIA Supergravity - Matrix Theory Duality
We start by reviewing the duality originally presented in [18], looking only at terms relevant
for the present work and setting our conventions. Useful references include [19,58,59]. The
bosonic part of the 10d type IIA supergravity action in string frame is
Sstring = 1
(2π)7g2
s α4

d10x g
[
e2φ(R + 4(∂φ)2) 1
4F 2
]
, (7)
with gs and α = ls being the string coupling and the string length, respectively. This
action involves the metric, a scalar dilaton φ and a gauge potential CM with field strength
FM N = M CN N CM and density F 2 FM N F M N . This system admits a solution
representing N coincident electric D-particles at the origin [60]:
ds2
string = H1/2dt2 + H1/2dxidxi, (8)
5
eφ = H3/4, (9)
C0 = H1 1, (10)
where H is a single-centered harmonic function on the Euclidean space labeled by Cartesian
coordinates xi, given by
H = 1 + Q
r7 , r2
9
i=1
x2
i , Q = 60π3gsN (α)7/2. (11)
It has been conjectured that the near-horizon limit or decoupling limit of the above
D-particle background is dual to matrix theory [18]. Explicitly, this decoupling limit is
gs 0, α 0, U r
α = fixed, g2
Y M N = fixed, (12)
where the energy is kept fixed while taking the limit, and the Yang-Mills coupling of matrix
theory is identified with
g2
Y M = 4π2gs(α)3/2. (13)
Performing a Weyl transformation on the string frame metric (8) while defining β0
4
25 (15π)2/7, one can go to the so-called dual frame [58]
ds2
dual β1
0 α′−10/7 (g2
Y M N eφ)2/7 ds2
string (14)
= 25
4
[
U 5
15πg2
Y M N dt2 + U 2dU 2 + d2
8
]
, (15)
in which the action reads
Sdual = β4
0 (g2
Y M N )8/7
(2π)3(α)9/7g4
Y M

d10x g
[
e 6
7 φ(R + 16
49(∂φ)2) e6
7 φ
4β0(α)10/7(g2
Y M N )2/7 F 2
]
.
(16)
For further simplification, we apply the following fields redefinitions,
e˜φ β1
1 (α)3/2(g2
Y M N )3/10 eφ, (17)
˜C0 β1/2
0 β 6
7
1 (α)2(g2
Y M N )2/5 C0, (18)
where we define β1 5×54/5
4×21/10(3π)3/10 , bringing the action to the form
Sdual = β4
0 β 6
7
1 (g2
Y M N )7/5
(2π)3g4
Y M

d10x g
[
e 6
7 ˜φ(R + 16
49( ˜φ)2) 1
4e6
7 ˜φ ˜F 2
]
. (19)
Finally, by performing the coordinate redefinition
z2 = 12π
5 g2
Y M N U 5, (20)
6
100%