Paper
Document
Download
Flag content
0

Detection of homozygous and hemizygous partial exon deletions by whole-exome sequencing

0
TipTip
Save
Document
Download
Flag content

Abstract

ABSTRACT The detection of copy number variations (CNVs) in whole-exome sequencing (WES) data is important, as CNVs may underlie a number of human genetic disorders. The recently developed HMZDelFinder algorithm can detect rare homozygous and hemizygous (HMZ) deletions in WES data more effectively than other widely used tools. Here, we present HMZDelFinder_opt, an approach that outperforms HMZDelFinder for the detection of HMZ deletions, including partial exon deletions in particular, in typical laboratory cohorts that are generated over time under different experimental conditions. We show that using an optimized reference control set of WES data, based on a PCA-derived Euclidean distance for coverage, strongly improves the detection of HMZ deletions both in real patients carrying validated disease-causing deletions and in simulated data. Furthermore, we develop a sliding window approach enabling HMZDelFinder-opt to identify HMZ partial deletions of exons that are otherwise undiscovered by HMZDelFinder. HMZDelFinder_opt is a timely and powerful approach for detecting HMZ deletions, particularly partial exon deletions, in laboratory cohorts, which are typically heterogeneous.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.