Paper
Document
Download
Flag content
0

Development of soft computing methods to predict moisture content of natural gases

0
TipTip
Save
Document
Download
Flag content

Abstract

In this paper, several numerical models have been presented for predicting the water content of natural gases in equilibrium with liquid water. Machine learning approaches including multilayer perceptron (MLP) neural network, radial basis function (RBF) neural network, and least squares support vector machine (LSSVM) algorithm have been utilized for precise determination of water content of natural gases. The presented models work for pressures up to 69 MPa and temperatures between 298.15 and 450.15 K as well as acid gas mole fractions up to 0.4. With accordance to the error analysis results it was found that the proposed LSSVM, RBF, and MLP models reproduce targets with the average absolute relative deviations (%AARD) being less than 2.8%, 4.1%, and 7.7%, respectively. Coefficients of determination values of the developed models are found to be greater than 0.99, illustrating good association of the predictions with corresponding reported data in the literature.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.