Paper
Document
Download
Flag content
0

Multi-path accelerating sulfadiazine degradation via peracetic acid oxidation induced by nanoconfined co species: Highlighting electron rearrangement effect

0
TipTip
Save
Document
Download
Flag content

Abstract

Peroxyacetic acid (PAA) oxidation has received widespread concerns for organic pollutant degradation with low secondary pollution. Nanoconfinement is an effective means to enhance the REDOX process by regulating reactive oxygen species formation and shortening the mass transfer distance. Herein, nanoconfined Co species were encapsulated in carbon nanotubes (Co3O4-in-CNTs), with more active sites and faster electron transfer, and exhibited excellent catalytic capacity on PAA activation. Consequently, the PAA/Co3O4-in-CNTs system achieved 100 % removal of sulfadiazine (SDZ) within 5 min, which was kinetically 24 times faster than the unconfined one. CH3C(O)OO and CH3C(O)O were the vital contributors, and the Co(IV) and 1O2 created non-radical oxidation pathways via electron transfer. Theoretical calculations revealed that the electron delocalization around Co-active sites and electron rearrangement induced by nanoconfinement promoted the Co(IV), 1O2, CH3C(O)OO, and CH3C(O)O formation, thus accelerating SDZ removal process. Moreover, the PAA/Co3O4-in-CNTs system performed great stability under different environmental conditions.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.