Complete panicle exsertion (CPE) is an economically important quantitative trait that contributes to grain yield in rice. We deployed an integrated approach for understanding the molecular mechanism of CPE using a stable EMS mutant line, CPE-109 of Samba Mahsuri (SM) exhibiting CPE. Two consistent genomic regions have been identified for CPE through QTL mapping [qCPE-4 (28.24-31.22 Mb) and qCPE-12 (2.30-3.18 Mb)] and QTL-sequencing [Chr-4 (31.21-33.69 Mb) and Chr-12 (0.12-3.15 Mb)]. Two non-synonymous SNPs, viz; KASP 12-12 (T→C; Chr12:1269983) in Os12g0126300; AP2/ERF transcription factor and KASP 12-16 (G→A; Chr12:1515198) in Os12g0131400; F-box domain-containing protein explained 81.05 and 59.61% phenotypic variance respectively and exhibited strong co-segregation with CPE in F2 mapping populations, advanced generation lines and CPE exhibiting SM mutants through KASP assays. The downregulation of these genes in CPE-109 compared to SM was observed in transcriptome sequencing of flag leaves which was validated through qRT-PCR. We propose that the abrogation of Os12g0126300 and Os12g0131400 in CPE-109 combinatorially influences the downregulation of ethylene biosynthetic genes viz. ACC synthase, ethylene-responsive factor-2, and up-regulation of gibberellic acid synthetic genes viz. ent-kaurene synthase and two cytokinin biosynthesis genes viz. cytokinin-O-glucosyltransferase 2, carboxy-lyase which result in complete panicle exsertion.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.