Paper
Document
Download
Flag content
0

Single-cell transcriptomic analysis of immune cell dynamics in the healthy human endometrium

0
TipTip
Save
Document
Download
Flag content

Abstract

The microenvironment of the endometrial immune system is crucial to the success of placental implantation and healthy pregnancy. However, the functionalities of immune cells across various stages of the reproductive cycle have yet to be fully comprehended. To address this, we conducted advanced bioinformatic analysis on 230,049 high-quality single-cell transcriptomes from healthy endometrial samples obtained during the proliferative, secretory, early pregnancy, and late pregnancy stages. Our investigation has unveiled that proliferative natural killer (NK) cells, a potential source of endometrial NK cells, exhibit the most robust proliferative and differentiation potential during non-pregnant stages. We have also identified similar differentiation trajectories of NK cells originating from proliferative NK cells across four stages. Notably, during early pregnancy, NK cells demonstrate the highest oxidative phosphorylation metabolism activity, and, in conjunction with macrophages and T cells, exhibit the strongest type II interferon response. With spatial transcriptome data, we have discerned that the most robust immune-non-immune interactions are associated with the promotion and inhibition of cell proliferation, differentiation and migration during four stages. Furthermore, we have compiled lists of stage-specific risk genes implicated in reproductive diseases, which hold promise as potential disease biomarkers. Our study provides insights into the dynamics of the endometrial immune microenvironment during different reproductive cycle stages, thus serving as a reference for detecting pathological changes during pregnancy.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or