Abstract Due to its highly repetitive nature, the human male-specific Y chromosome remains understudied. It is important to investigate variation on the Y chromosome to understand its evolution and contribution to phenotypic variation, including infertility. Approximately 20% of the human Y chromosome consists of ampliconic regions which include nine multi-copy gene families. These gene families are expressed exclusively in testes and usually implicated in spermatogenesis. Here, to gain a better understanding of the role of the Y chromosome in human evolution and in determining sexually dimorphic traits, we studied ampliconic gene copy number variation in 100 males representing ten major Y haplogroups world-wide. Copy number was estimated with droplet digital PCR. In contrast to low nucleotide diversity observed on the Y in previous studies, here we show that ampliconic gene copy number diversity is very high. A total of 98 copy-number-based haplotypes were observed among 100 individuals, and haplotypes were sometimes shared by males from very different haplogroups, suggesting homoplasies. The resulting haplotypes did not cluster according to major Y haplogroups. Overall, only three gene families ( DATZ, RBMY, TSPY ) showed significant differences in copy number among major Y haplogroups, and the haplogroup of an individual could not be predicted based on his ampliconic gene copy numbers. Finally, we found a significant correlation between copy number variation and individual’s height (for three gene families), but not between the former and facial masculinity/femininity. Our results suggest rapid evolution of ampliconic gene copy numbers on the human Y, and we discuss its causes.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.