Paper
Document
Download
Flag content
0

Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity

Published
Jan 15, 1991
Show more
Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

A new frequency modulation (FM) technique has been demonstrated which enhances the sensitivity of attractive mode force microscopy by an order of magnitude or more. Increased sensitivity is made possible by operating in a moderate vacuum (<10−3 Torr), which increases the Q of the vibrating cantilever. In the FM technique, the cantilever serves as the frequency determining element of an oscillator. Force gradients acting on the cantilever cause instantaneous frequency modulation of the oscillator output, which is demodulated with a FM detector. Unlike conventional ‘‘slope detection,’’ the FM technique offers increased sensitivity through increased Q without restricting system bandwidth. Experimental comparisons of FM detection in vacuum (Q∼50 000) versus slope detection in air (Q∼100) demonstrated an improvement of more than 10 times in sensitivity for a fixed bandwidth. This improvement is evident in images of magnetic transitions on a thin-film CoPtCr magnetic disk. In the future, the increased sensitivity offered by this technique should extend the range of problems accessible by force microscopy.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.