Modified Cu electrodes were prepared by annealing Cu foil in air and electrochemically reducing the resulting Cu2O layers. The CO2 reduction activities of these electrodes exhibited a strong dependence on the initial thickness of the Cu2O layer. Thin Cu2O layers formed by annealing at 130 °C resulted in electrodes whose activities were indistinguishable from those of polycrystalline Cu. In contrast, Cu2O layers formed at 500 °C that were ≥ ∼3 μm thick resulted in electrodes that exhibited large roughness factors and required 0.5 V less overpotential than polycrystalline Cu to reduce CO2 at a higher rate than H2O. The combination of these features resulted in CO2 reduction geometric current densities >1 mA/cm2 at overpotentials <0.4 V, a higher level of activity than all previously reported metal electrodes evaluated under comparable conditions. Moreover, the activity of the modified electrodes was stable over the course of several hours, whereas a polycrystalline Cu electrode exhibited deactivation within 1 h under identical conditions. The electrodes described here may be particularly useful for elucidating the structural properties of Cu that determine the distribution between CO2 and H2O reduction and provide a promising lead for the development of practical catalysts for electrolytic fuel synthesis.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.