Background and Purpose— Pulse pressure is a stronger predictor of cardiovascular events than systolic or diastolic blood pressure in large cohorts of French and North American patients. However, its influence on stroke is controversial. Large-artery stiffness is the main determinant of pulse pressure. The influence of arterial stiffness on the occurrence of stroke has never been demonstrated. Our aim was to establish the relationship between aortic stiffness and stroke death in hypertensive patients. Methods— We included, in a longitudinal study, 1715 essential hypertensive patients who had a measurement of arterial stiffness at entry (ie, between 1980 and 2001) and no overt cardiovascular disease or symptoms. Mean follow-up was 7.9 years. At entry, aortic stiffness was assessed from the carotid-femoral pulse wave velocity. A Cox proportional hazard regression model was used to estimate the relative risk (RR) of stroke and coronary deaths. Results— Mean±SD age at entry was 51±13 years. Twenty-five fatal strokes and 35 fatal coronary events occurred. Pulse wave velocity significantly predicted the occurrence of stroke death in the whole population. There was a RR increase of 1.72 (95% CI, 1.48 to 1.96; P <0.0001) for each SD increase in pulse wave velocity (4 m/s). The predictive value of pulse wave velocity remained significant (RR=1.39 [95% CI, 1.08 to 1.72]; P =0.02) after full adjustment for classic cardiovascular risk factors, including age, cholesterol, diabetes, smoking, mean blood pressure, and pulse pressure. In this population, pulse pressure significantly predicted stroke in univariate analysis, with a RR increase of 1.33 (95% CI, 1.16 to 1.51) for each 10 mm Hg of pulse pressure ( P <0.0001) but not after adjustment for age (RR=1.19 [95% CI, 0.96 to 1.47]; P =0.10). Conclusions— This study provides the first evidence, in a longitudinal study, that aortic stiffness is an independent predictor of fatal stroke in patients with essential hypertension.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.