Paper
Document
Download
Flag content
0

Transcriptional Repression of PGC-1α by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

Huntington's disease (HD) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HD pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1α, a transcriptional coactivator that regulates several metabolic processes, including mitochondrial biogenesis and respiration. Mutant huntingtin represses PGC-1α gene transcription by associating with the promoter and interfering with the CREB/TAF4-dependent transcriptional pathway critical for the regulation of PGC-1α gene expression. Crossbreeding of PGC-1α knockout (KO) mice with HD knockin (KI) mice leads to increased neurodegeneration of striatal neurons and motor abnormalities in the HD mice. Importantly, expression of PGC-1α partially reverses the toxic effects of mutant huntingtin in cultured striatal neurons. Moreover, lentiviral-mediated delivery of PGC-1α in the striatum provides neuroprotection in the transgenic HD mice. These studies suggest a key role for PGC-1α in the control of energy metabolism in the early stages of HD pathogenesis.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.