Abstract Liquid–liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions which have a general propensity to fuse and coalesce; however, many condensates persist as independent droplets inside cells. This stability is crucial for their functioning, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modelling, we investigate how the forces that sustain condensates impact their stability against fusion. By comparing PR 25 :PolyU and FUS condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity, and that this behavior can be inferred from their zeta potentials. We reveal that overall stabilization against fusion stems from a combination of repulsive forces between condensates and the effects that surface electrostatics have on lowering surface tension, thus shedding light on the molecular determinants of condensate coalescence.
This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.