Abstract
Homer is a neuronal immediate early gene (IEG) that is enriched at excitatory synapses and binds group 1 metabotropic glutamate receptors (mGluRs). Here, we characterize a family of Homer-related proteins derived from three distinct genes. Like Homer IEG (now termed Homer 1a), all new members bind group 1 mGluRs. In contrast to Homer 1a, new members are constitutively expressed and encode a C-terminal coiled-coil (CC) domain that mediates self-multimerization. CC-Homers form natural complexes that cross-link mGluRs and are enriched at the postsynaptic density. Homer 1a does not multimerize and blocks the association of mGluRs with CC-Homer complexes. These observations support a model in which the dynamic expression of Homer 1a competes with constitutively expressed CC-Homers to modify synaptic mGluR properties.