Paper
Document
Download
Flag content
0

Phase separation of a yeast prion protein promotes cellular fitness

0
TipTip
Save
Document
Download
Flag content

Abstract

Biophysical responses of proteins to stress Much recent work has focused on liquid-liquid phase separation as a cellular response to changing physicochemical conditions. Because phase separation responds critically to small changes in conditions such as pH, temperature, or salt, it is in principle an ideal way for a cell to measure and respond to changes in the environment. Small pH changes could, for instance, induce phase separation of compartments that store, protect, or inactivate proteins. Franzmann et al. used the yeast translation termination factor Sup35 as a model for a phase separation–induced stress response. Lowering the pH induced liquid-liquid phase separation of Sup35. The resulting liquid compartments subsequently hardened into gels, which sequestered the termination factor. Raising the pH triggered dissolution of the gels, concomitant with translation restart. Protecting Sup35 in gels could provide a fitness advantage to recovering yeast cells that must restart the translation machinery after stress. Science , this issue p. eaao5654

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.