Paper
Document
Download
Flag content
0

Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey

Save
TipTip
Document
Download
Flag content
0
TipTip
Save
Document
Download
Flag content

Abstract

The three-dimensional topological insulator is a quantum state of matter characterized by an insulating bulk state and gapless Dirac cone surface states. Device applications of topological insulators require a highly insulating bulk and tunable Dirac carriers, which has so far been difficult to achieve. Here we demonstrate that Bi2-xSbxTe3-ySey is a system that simultaneously satisfies both of these requirements. For a series of compositions presenting bulk-insulating transport behaviour, angle-resolved photoemission spectroscopy reveals that the chemical potential is always located in the bulk band gap, whereas the Dirac cone dispersion changes systematically so that the Dirac point moves up in energy with increasing x, leading to a sign change of the Dirac carriers at x~0.9. Such a tunable Dirac cone opens a promising pathway to the development of novel devices based on topological insulators. The surface electronic structure of topological insulators is characterized by a so-called Dirac cone energy dispersion. This study shows that by tuning the compositions in the compound Bi2−xSbxTe3−ySeyone can control the precise features of its Dirac cone structure while keeping it a bulk insulator.

Paper PDF

This paper's license is marked as closed access or non-commercial and cannot be viewed on ResearchHub. Visit the paper's external site.