Paper
Document
Submit new version
Download
Flag content
0

Redox Non-innocent Ligand Controls Water Oxidation Overpotential in a New Family of Mononuclear Cu-Based Efficient Catalysts

Save
TipTip
Document
Submit new version
Download
Flag content
0
TipTip
Save
Document
Submit new version
Download
Flag content

Abstract

A new family of tetra-anionic tetradentate amidate ligands, N1,N1'-(1,2-phenylene)bis(N2-methyloxalamide) (H4L1), and its derivatives containing electron-donating groups at the aromatic ring have been prepared and characterized, together with their corresponding anionic Cu(II) complexes, [(LY)Cu](2-). At pH 11.5, the latter undergoes a reversible metal-based III/II oxidation process at 0.56 V and a ligand-based pH-dependent electron-transfer process at 1.25 V, associated with a large electrocatalytic water oxidation wave (overpotential of 700 mV). Foot-of-the-wave analysis gives a catalytic rate constant of 3.6 s(-1) at pH 11.5 and 12 s(-1) at pH 12.5. As the electron-donating capacity at the aromatic ring increases, the overpotential is drastically reduced down to a record low of 170 mV. In addition, DFT calculations allow us to propose a complete catalytic cycle that uncovers an unprecedented pathway in which crucial O-O bond formation occurs in a two-step, one-electron process where the peroxo intermediate generated has no formal M-O bond but is strongly hydrogen bonded to the auxiliary ligand.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or