Abstract Color centers in silicon have recently gained considerable attention as single-photon sources and as spin qubit-photon interfaces. However, one of the major bottlenecks to the application of silicon color centers is their low overall brightness due to a relatively slow emission rate and poor light extraction from silicon. Here, we increase the photon collection efficiency from an ensemble of a particular kind of color center, known as W centers, by embedding them in circular Bragg grating cavities resonant with their zero-phonon-line emission. We observe a ≈5-fold enhancement in the photon collection efficiency (the fraction of photons extracted from the sample and coupled into a single-mode fiber), corresponding to an estimated ≈11-fold enhancement in the photon extraction efficiency (the fraction of photons collected by the first lens above the sample). For these cavities, we observe lifetime reduction by a factor of