TA
Tetsuya Akiyama
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
697
h-index:
18
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A

X. Rosa et al.Feb 23, 2022
Abstract A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord 1 . A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing 2–4 . Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies 5,6 , but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A . Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS ( UNC13A genetic variants), and loss of TDP-43 function.
1
Citation294
0
Save
3

Identification of hub molecules of FUS-ALS by Bayesian gene regulatory network analysis of iPSC model: iBRN

Masanobu Nogami et al.Jan 8, 2021
SUMMARY Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, “Non-biased” B ayesian gene regulatory n etwork analysis based on i nduced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUS H517D . iBRN revealed “hub molecules”, which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUS H517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases. Highlights A new platform technology, “iBRN”, Bayesian gene regulatory network analysis based on iPSC cells iBRN identifies hub molecules to strongly influence the gene network in FUS-ALS PRKDC specifically acts as a guardian against FUS mis-localization during DNA damage stress miR-125b-5p-TIMELESS axis regulates DNA repair-related genes in FUS-ALS.
1

Small molecule v-ATPase inhibitor Etidronate lowers levels of ALS protein ataxin-2

Garam Kım et al.Dec 21, 2021
Summary Antisense oligonucleotide therapy targeting ATXN2 —a gene in which mutations cause neurodegenerative diseases spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis—has entered clinical trials in humans. Additional methods to lower ataxin-2 levels would be beneficial not only in uncovering potentially cheaper or less invasive therapies, but also in gaining greater mechanistic insight into how ataxin-2 is normally regulated. We performed a genome-wide fluorescence activated cell sorting (FACS)-based CRISPR screen in human cells and identified multiple subunits of the lysosomal vacuolar ATPase (v-ATPase) as regulators of ataxin-2 levels. We demonstrate that Etidronate—a U.S. Food and Drug Administration (FDA)-approved drug that inhibits the v-ATPase—lowers ataxin-2 protein levels in mouse and human neurons. Moreover, oral administration of the drug to mice in their water supply and food is sufficient to lower ataxin-2 levels in the brain. Thus, we uncover Etidronate as a safe and inexpensive compound for lowering ataxin-2 levels and demonstrate the utility of FACS-based screens for identifying targets to modulate levels of human disease proteins.