NY
Nir Yosef
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
University of California, Berkeley, Ragon Institute of MGH, MIT and Harvard, Weizmann Institute of Science
+ 9 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
70
(57% Open Access)
Cited by:
676
h-index:
65
/
i10-index:
144
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Cross-tissue immune cell analysis reveals tissue-specific features in humans

Cecilia Conde et al.May 19, 2022
+38
L
C
C
Despite their crucial role in health and disease, our knowledge of immune cells within human tissues remains limited. We surveyed the immune compartment of 16 tissues from 12 adult donors by single-cell RNA sequencing and VDJ sequencing generating a dataset of ~360,000 cells. To systematically resolve immune cell heterogeneity across tissues, we developed CellTypist, a machine learning tool for rapid and precise cell type annotation. Using this approach, combined with detailed curation, we determined the tissue distribution of finely phenotyped immune cell types, revealing hitherto unappreciated tissue-specific features and clonal architecture of T and B cells. Our multitissue approach lays the foundation for identifying highly resolved immune cell types by leveraging a common reference dataset, tissue-integrated expression analysis, and antigen receptor sequencing.
2

Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution

Dian Yang et al.May 21, 2022
+20
S
M
D
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
2
Paper
Citation132
1
Save
0

An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets

Huiyuan Zhang et al.Aug 28, 2024
+22
N
A
H
Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets.
0
Paper
Citation64
0
Save
66

MultiVI: deep generative model for the integration of multi-modal data

Tal Ashuach et al.Oct 11, 2023
N
M
M
T
Abstract Jointly profiling the transcriptional and chromatin accessibility landscapes of single-cells is a powerful technique to characterize cellular populations. Here we present MultiVI, a probabilistic model to analyze such multiomic data and integrate it with single modality datasets. MultiVI creates a joint representation that accurately reflects both chromatin and transcriptional properties of the cells even when one modality is missing. It also imputes missing data, corrects for batch effects and is available in the scvi-tools framework: https://docs.scvi-tools.org/ .
67

Multi-resolution deconvolution of spatial transcriptomics data reveals continuous patterns of inflammation

Romain Lopez et al.Oct 23, 2023
+10
H
B
R
Abstract The function of mammalian cells is largely influenced by their tissue microenvironment. Advances in spatial transcriptomics open the way for studying these important determinants of cellular function by enabling a transcriptome-wide evaluation of gene expression in situ . A critical limitation of the current technologies, however, is that their resolution is limited to niches (spots) of sizes well beyond that of a single cell, thus providing measurements for cell aggregates which may mask critical interactions between neighboring cells of different types. While joint analysis with single-cell RNA-sequencing (scRNA-seq) can be leveraged to alleviate this problem, current analyses are limited to a discrete view of cell type proportion inside every spot. This limitation becomes critical in the common case where, even within a cell type, there is a continuum of cell states that cannot be clearly demarcated but reflects important differences in the way cells function and interact with their surroundings. To address this, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI), a probabilistic method for multi-resolution analysis for spatial transcriptomics that explicitly models continuous variation within cell types. Using simulations, we demonstrate that DestVI is capable of providing higher resolution compared to the existing methods and that it can estimate gene expression by every cell type inside every spot. We then introduce an automated pipeline that uses DestVI for analysis of single tissue slices and comparison between tissues. We apply this pipeline to study the immune crosstalk within lymph nodes to infection and explore the spatial organization of a mouse tumor model. In both cases, we demonstrate that DestVI can provide a high resolution and accurate spatial characterization of the cellular organization of these tissues, and that it is capable of identifying important cell-type-specific changes in gene expression - between different tissue regions or between conditions. DestVI is available as an open-source software package in the scvi-tools codebase ( https://scvi-tools.org ).
67
Citation21
0
Save
1

Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells

Adam Gayoso et al.Oct 24, 2023
+5
M
P
A
Abstract RNA velocity has been rapidly adopted to guide the interpretation of transcriptional dynamics in snapshot single-cell transcriptomics data. Current approaches for estimating and analyzing RNA velocity can empirically reveal complex dynamics but lack effective strategies for quantifying the uncertainty of the estimate and its overall applicability to the system of interest. Here, we present veloVI (velocity variational inference), a deep generative modeling framework for estimating RNA velocity. veloVI learns a gene-specific dynamical model of RNA metabolism and provides a transcriptome-wide quantification of velocity uncertainty. We show in a series of examples that veloVI compares favorably to previous approaches for inferring RNA velocity with improvements in fit to the data, consistency across transcriptionally similar cells, and stability across preprocessing pipelines for quantifying RNA abundance. Further, we demonstrate that properties unique to veloVI, such as posterior velocity uncertainty, can be used to assess the appropriateness of analysis with velocity to the data at hand. Finally, we highlight veloVI as a flexible framework for modeling transcriptional dynamics by adapting the underlying dynamical model to use time-dependent transcription rates.
0

Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts

Jeffrey Quinn et al.May 7, 2020
+5
R
M
J
Abstract Cancer progression is characterized by rare, transient events which are nonetheless highly consequential to disease etiology and mortality. Detailed cell phylogenies can recount the history and chronology of these critical events – including metastatic seeding. Here, we applied our Cas9-based lineage tracer to study the subclonal dynamics of metastasis in a lung cancer xenograft mouse model, revealing the underlying rates, routes, and drivers of metastasis. We report deeply resolved phylogenies for tens of thousands of metastatically disseminated cancer cells. We observe surprisingly diverse metastatic phenotypes, ranging from metastasis-incompetent to aggressive populations. These phenotypic distinctions result from pre-existing, heritable, and characteristic differences in gene expression, and we demonstrate that these differentially expressed genes can drive invasiveness. Furthermore, metastases transit via diverse, multidirectional tissue routes and seeding topologies. Our work demonstrates the power of tracing cancer progression at unprecedented resolution and scale. One Sentence Summary Single-cell lineage tracing and RNA-seq capture diverse metastatic behaviors and drivers in lung cancer xenografts in mice.
0
Citation11
0
Save
37

Reconstructing unobserved cellular states from paired single-cell lineage tracing and transcriptomics data

Khalil Ouardini et al.Oct 24, 2023
+4
M
R
K
A bstract Novel experimental assays now simultaneously measure lineage relationships and transcriptomic states from single cells, thanks to CRISPR/Cas9-based genome engineering. These multimodal measurements allow researchers not only to build comprehensive phylogenetic models relating all cells but also infer transcriptomic determinants of consequential subclonal behavior. The gene expression data, however, is limited to cells that are currently present (“leaves” of the phylogeny). As a consequence, researchers cannot form hypotheses about unobserved, or “ancestral”, states that gave rise to the observed population. To address this, we introduce TreeVAE: a probabilistic framework for estimating ancestral transcriptional states. TreeVAE uses a variational autoencoder (VAE) to model the observed transcriptomic data while accounting for the phylogenetic relationships between cells. Using simulations, we demonstrate that TreeVAE outperforms benchmarks in reconstructing ancestral states on several metrics. TreeVAE also provides a measure of uncertainty, which we demonstrate to correlate well with its prediction accuracy. This estimate therefore potentially provides a data-driven way to estimate how far back in the ancestor chain predictions could be made. Finally, using real data from lung cancer metastasis, we show that accounting for phylogenetic relationship between cells improves goodness of fit. Together, TreeVAE provides a principled framework for reconstructing unobserved cellular states from single cell lineage tracing data.
0

Joint probabilistic modeling of paired transcriptome and proteome measurements in single cells

Adam Gayoso et al.May 28, 2024
+4
R
Z
A
A bstract The paired measurement of RNA and surface protein abundance in single cells with CITE-seq is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, each data modality exhibits unique technical biases, making it challenging to conduct a joint analysis and combine these two views into a unified representation of cell state. Here we present Total Variational Inference (totalVI), a framework for the joint probabilistic analysis of paired RNA and protein data from single cells. totalVI probabilistically represents the data as a composite of biological and technical factors such as limited sensitivity of the RNA data, background in the protein data, and batch effects. To evaluate totalVI, we performed CITE-seq on immune cells from murine spleen and lymph nodes with biological replicates and with different antibody panels measuring over 100 surface proteins. With this dataset, we demonstrate that totalVI provides a cohesive solution for common analysis tasks like the integration of datasets with matched or unmatched protein panels, dimensionality reduction, clustering, evaluation of correlations between molecules, and differential expression testing. totalVI enables scalable, end-to-end analysis of paired RNA and protein data from single cells and is available as open-source software.
22

PeakVI: A Deep Generative Model for Single Cell Chromatin Accessibility Analysis

Tal Ashuach et al.Oct 24, 2023
N
A
D
T
A bstract Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects such as library size and region-specific biases. Additionally, PeakVI provides a technique for identifying differential accessibility at a single region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework: https://docs.scvi-tools.org/ .
Load More