DL
Davis Lee
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
2,929
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dysregulation of brain and choroid plexus cell types in severe COVID-19

Andrew Yang et al.Jun 21, 2021
Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1–3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4–6. Synaptic signalling of upper-layer excitatory neurons—which are evolutionarily expanded in humans7 and linked to cognitive function8—is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date. Single-nucleus transcriptomes of frontal cortex and choroid plexus samples from patients with COVID-19 reveal pathological cell states that are similar to those associated with human neurodegenerative diseases and chronic brain disorders.
0
Citation477
0
Save
89

A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk

Andrew Yang et al.Feb 14, 2022
The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms—the blood–brain barrier—impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer’s disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer’s disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer’s disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer’s disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy. A method called vessel isolation and nuclei extraction for sequencing (VINE-seq) produces a molecular map of vascular and perivascular cell types in the human brain and reveals their contributions to Alzheimer’s disease risk.
89
Citation418
0
Save
0

Ageing hallmarks exhibit organ-specific temporal signatures

Nicholas Schaum et al.Jul 15, 2020
Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified—such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1—these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2—or ‘Mouse Ageing Cell Atlas’—which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions—including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue—including plasma cells that express immunoglobulin J—which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age. Bulk RNA sequencing of organs and plasma proteomics at different ages across the mouse lifespan is integrated with data from the Tabula Muris Senis, a transcriptomic atlas of ageing mouse tissues, to describe organ-specific changes in gene expression during ageing.
0
Citation406
0
Save
0

Physiological blood–brain transport is impaired with age by a shift in transcytosis

Andrew Yang et al.Jul 1, 2020
The vascular interface of the brain, known as the blood-brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability1-3. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins4,5. Thus, it is unclear whether permeability to individually injected exogenous tracers-as is standard in BBB studies-fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.
0
Citation313
0
Save
71

Molecular hallmarks of heterochronic parabiosis at single-cell resolution

Róbert Pálovics et al.Mar 2, 2022
The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.
71
Citation67
1
Save
135

A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk

Andrew Yang et al.Apr 27, 2021
Abstract The human brain vasculature is of vast medical importance: its dysfunction causes disability and death, and the specialized structure it forms—the blood-brain barrier—impedes treatment of nearly all brain disorders. Yet, no molecular atlas of the human brain vasculature exists. Here, we develop Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to profile the major human brain vascular and perivascular cell types through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 17 control and Alzheimer’s disease (AD) patients. We identify brain region-enriched pathways and genes divergent between humans and mice, including those involved in disease. We describe the principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum; but discover that many zonation and cell-type markers differ between species. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In AD, we observe a selective vulnerability of ECM-maintaining pericytes and gene expression patterns implicating dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 AD GWAS genes are expressed in the human brain vasculature, confirmed in situ . Vascular GWAS genes map to endothelial protein transport, adaptive immune, and ECM pathways. Many are microglia-specific in mice, suggesting an evolutionary transfer of AD risk to human vascular cells. Our work unravels the molecular basis of the human brain vasculature, informing our understanding of overall brain health, disease, and therapy.
135
Citation49
0
Save
198

Broad transcriptional dysregulation of brain and choroid plexus cell types with COVID-19

Andrew Yang et al.Oct 22, 2020
Abstract Though SARS-CoV-2 primarily targets the respiratory system, it is increasingly appreciated that patients may suffer neurological symptoms of varied severity 1–3 . However, an unbiased understanding of the molecular processes across brain cell types that could contribute to these symptoms in COVID-19 patients is still missing. Here, we profile 47,678 droplet-based single-nucleus transcriptomes from the frontal cortex and choroid plexus across 10 non-viral, 4 COVID-19, and 1 influenza patient. We complement transcriptomic data with immunohistochemical staining for the presence of SARS-CoV-2. We find that all major cortex parenchymal and choroid plexus cell types are affected transcriptionally with COVID-19. This arises, in part, from SARS-CoV-2 infection of the cortical brain vasculature, meninges, and choroid plexus, stimulating increased inflammatory signaling into the brain. In parallel, peripheral immune cells infiltrate the brain, microglia activate programs mediating the phagocytosis of live neurons, and astrocytes dysregulate genes involved in neurotransmitter homeostasis. Among neurons, layer 2/3 excitatory neurons—evolutionarily expanded in humans 4 —show a specific downregulation of genes encoding major SNARE and synaptic vesicle components, predicting compromised synaptic transmission. These perturbations are not observed in terminal influenza. Many COVID-19 gene expression changes are shared with those in chronic brain disorders and reside in genetic variants associated with cognitive function, schizophrenia, and depression. Our findings and public dataset provide a molecular framework and new opportunities to understand COVID-19 related neurological disease.
198
Citation26
0
Save
Load More