JF
Joshua Faskowitz
Author with expertise in Analysis of Brain Functional Connectivity Networks
Indiana University Bloomington, National Institute of Mental Health, National Institutes of Health
+ 10 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
36
(78% Open Access)
Cited by:
101
h-index:
24
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
49

Individualized event structure drives individual differences in whole-brain functional connectivity

Richard Betzel et al.Oct 24, 2023
+2
S
S
R
Resting-state functional connectivity is typically modeled as the correlation structure of whole-brain regional activity. It is studied widely, both to gain insight into the brain’s intrinsic organization but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and developmental state. Despite this, the origins and drivers of functional connectivity, especially at the level of densely sampled individuals, remain elusive. Here, we leverage novel methodology to decompose functional connectivity into its precise framewise contributions. Using two dense sampling datasets, we investigate the origins of individualized functional connectivity, focusing specifically on the role of brain network “events” – short-lived and peaked patterns of high-amplitude cofluctuations. Here, we develop a statistical test to identify events in empirical recordings. We show that the patterns of cofluctuation expressed during events are repeated across multiple scans of the same individual and represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly, we propose a simple model of functional connectivity based on event cofluctuations, demonstrating that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity. Our work complements recent studies implicating brief instants of high-amplitude cofluctuations as the primary drivers of static, whole-brain functional connectivity. Our work also extends those studies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for functional connectivity.
28

Multi-policy models of interregional communication in the human connectome

Richard Betzel et al.Oct 24, 2023
+2
B
J
R
Network models of communication, e.g. shortest paths, diffusion, navigation, have become useful tools for studying structure-function relationships in the brain. These models generate estimates of communication efficiency between all pairs of brain regions, which can then be linked to the correlation structure of recorded activity, i.e. functional connectivity (FC). At present, however, communication models have a number of limitations, including difficulty adjudicating between models and the absence of a generic framework for modeling multiple interacting communication policies at the regional level. Here, we present a framework that allows us to incorporate multiple region-specific policies and fit them to empirical estimates of FC. Briefly, we show that many communication policies, including shortest paths and greedy navigation, can be modeled as biased random walks, enabling these policies to be incorporated into the same multi-policy communication model alongside unbiased processes, e.g. diffusion. We show that these multi-policy models outperform existing communication measures while yielding neurobiologically interpretable regional preferences. Further, we show that these models explain the majority of variance in time-varying patterns of FC. Collectively, our framework represents an advance in network-based communication models and establishes a strong link between these patterns and FC. Our findings open up many new avenues for future inquiries and present a flexible framework for modeling anatomically-constrained communication.
11

High-amplitude network co-fluctuations linked to variation in hormone concentrations over menstrual cycle

Sarah Greenwell et al.Oct 24, 2023
+3
L
J
S
Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and both brain activity and connectivity. However, how hormonal fluctuations impact fast changes in brain network structure over short timescales remains unknown. Here, we leverage “edge time series” analysis to investigate the relationship between high-amplitude network states and quotidian variation in sex steroid and gonadotropic hormones in a single individual sampled over the course of two endocrine states, across a natural menstrual cycle and under a hormonal regimen. We find that the frequency of high-amplitude network states are associated with follicle-stimulating and luteinizing hormone, but not the sex hormones estradiol and progesterone. Nevertheless, we show that scan-to-scan variation in the co-fluctuation patterns expressed during network states are robustly linked with the concentration of all four hormones, positing a network-level target of hormonal control. We conclude by speculating on the role of hormones in shaping ongoing brain dynamics.
11
Paper
Citation12
0
Save
46

Local structure-function relationships in human brain networks across the lifespan

Farnaz Esfahlani et al.Oct 24, 2023
+2
J
J
F
The human connectome is the set of physical pathways linking brain regions to one another. Empirical and in silico studies have demonstrated that the structure of this network helps shape patterns of functional coupling between brain regions. To better understand this link between structure and function, a growing number of studies have derived geometric, dynamic, and topological predictors from structural connectivity in order to make predictions about correlation structure. These studies, however, have typically focused on global (whole-brain) predictions using a restricted set of predictors. Here, we investigate a wide range of predictors and shift focus onto predictions of local (regional) patterns of functional coupling. We show that, globally, no individual predictor performs well and, that even the best predictors are largely driven by their ability to predict functional coupling between directly connected regions. We then use the same predictors to make predictions of local coupling and find marked improvement. Notably, the most predictable local FC is linked to sensorimotor regions, which are best predicted by measures based on topological similarity, mean first passage times of random walkers, and the brain’s embedding in Euclidean space. We then show that by combining the predictive power of more than one predictor using multi-linear models, we can further improve local predictions. Finally, we investigate how global and local structure-function coupling differences across the human lifespan. We find that, globally, the magnitude of coupling decreases with biological age, which is paralleled by an increase in the number of multi-step pathways. We also show that, locally, structure-function coupling is preserved in higher order cognitive systems, but preferentially decreases with age in sensorimotor systems. Our results illuminate the heterogeneous landscape of structure-function coupling across the cerebral cortex and help clarify its differences with age.
18

Hierarchical organization of spontaneous co-fluctuations in densely-sampled individuals using fMRI

Richard Betzel et al.Oct 24, 2023
+4
J
S
R
ABSTRACT Edge time series decompose FC into its framewise contributions. Previous studies have focused on characterizing the properties of high-amplitude frames, including their cluster structure. Less is known about middle- and low-amplitude co-fluctuations. Here, we address those questions directly, using data from two dense-sampling studies: the MyConnectome project and Midnight Scan Club. We develop a hierarchical clustering algorithm to group peak co-fluctuations of all magnitudes into nested and multi-scale clusters based on their pairwise concordance. At a coarse scale, we find evidence of three large clusters that, collectively, engage virtually all canonical brain systems. At finer scales, however, each cluster is dissolved, giving way to increasingly refined patterns of co-fluctuations involving specific sets of brain systems. We also find an increase in global co-fluctuation magnitude with hierarchical scale. Finally, we comment on the amount of data needed to estimate co-fluctuation pattern clusters and implications for brain-behavior studies. Collectively, the findings reported here fill several gaps in current knowledge concerning the heterogeneity and richness of co-fluctuation patterns as estimated with edge time series while providing some practical guidance for future studies.
70

The diversity and multiplexity of edge communities within and between brain systems

Youngheun Jo et al.Oct 24, 2023
+3
J
F
Y
The human brain is composed of regions that can be grouped into functionally specialized systems. These systems transiently couple and decouple across time to support complex cognitive processes. Recently, we proposed an edge-centric model of brain networks whose elements can be clustered to reveal communities of connections whose co-fluctuations are correlated across time. It remains unclear, however, how these co-fluctuation patterns relate to traditionally-defined brain systems. Here, we address this question using data from the Midnight Scan Club. We show that edge communities transcend traditional definitions of brain systems, forming a multiplexed network in which all pairs of brain systems are linked to one another by at least two distinct edge communities. Mapping edge communities back to individual brain regions and deriving a novel distance metric to describe the similarity of regions’ “edge community profiles”, we then demonstrate that the within-system similarity of profiles is heterogeneous across systems. Specifically, we find that heteromodal association areas exhibit significantly greater diversity of edge communities than primary sensory systems. Next, we cluster the entire cerebral cortex according to the similarity of regions’ edge community profiles, revealing systematic differences between traditionally-defined systems and the detected clusters. Specifically, we find that regions in heteromodal systems exhibit dissimilar edge community profiles and are more likely to form their own clusters. Finally, we show show that edge communities are highly personalized and can be used to identify individual subjects. Collectively, our work reveals the pervasive overlap of edge communities across the cerebral cortex and characterizes their relationship with the brain’s system level architecture. Our work provides clear pathways for future research using edge-centric brain networks to investigate individual differences in behavior, development, and disease.
0

Commentary on Pang et al. (2023)Nature

Joshua Faskowitz et al.May 26, 2024
+4
D
D
J
Abstract Pang et al. (2023) present novel analyses demonstrating that brain dynamics can be understood as resulting from the excitation of geometric modes, derived from the shape of the brain. Notably, they demonstrate that linear combinations of geometric modes can reconstruct patterns of fMRI data more accurately, and with fewer dimensions, than comparable connectivity-derived modes. Equipped with these results, and underpinned by neural field theory, the authors contend that the geometry of the cortical surface provides a more parsimonious explanation of brain activity than structural brain connectivity. This claim runs counter to prevailing theories of information flow in the brain, which emphasize the role of long-distance axonal projections and fasciculated white matter in relaying signals between cortical regions (Honey et al. 2009; Deco et al. 2011; Seguin et al., 2023). While we acknowledge that cortical geometry plays an important role in shaping human brain function, we feel that the presented work falls short of establishing that the brain’s geometry is “a more fundamental constraint on dynamics than complex interregional connectivity” (Pang et al. 2023). Here, we provide 1) a brief critique of the paper’s framing and 2) evidence showing that their methodology lacks specificity to the brain’s orientation and shape. Ultimately, we recognize that the geometric mode approach is a powerful representational framework for brain dynamics analysis, but we also believe that there are key caveats to consider alongside the claims made in the manuscript.
97

Dynamic Expression of Brain Functional Systems Disclosed by Fine-Scale Analysis of Edge Time Series

Olaf Sporns et al.Oct 24, 2023
R
A
J
O
Abstract Functional connectivity (FC) describes the statistical dependence between brain regions in resting-state fMRI studies and is usually estimated as the Pearson correlation of time courses. Clustering reveals densely coupled sets of regions constituting a set of resting-state networks or functional systems. These systems manifest most clearly when FC is sampled over longer epochs lasting many minutes but appear to fluctuate on shorter time scales. Here, we propose a new approach to track these temporal fluctuations. Un-wrapping FC signal correlations yields pairwise co-fluctuation time series, one for each node pair/edge, and reveals fine-scale dynamics across the network. Co-fluctuations partition the network, at each time step, into exactly two communities. Sampled over time, the overlay of these bipartitions, a binary decomposition of the original time series, very closely approximates functional connectivity. Bipartitions exhibit characteristic spatiotemporal patterns that are reproducible across participants and imaging sessions and disclose fine-scale profiles of the time-varying levels of expression of functional systems. Our findings document that functional systems appear transiently and intermittently, and that FC results from the overlay of many variable instances of system expression. Potential applications of this decomposition of functional connectivity into a set of binary patterns are discussed.
23

Subject identification using edge-centric functional connectivity

Youngheun Jo et al.Oct 24, 2023
+2
F
J
Y
Group-level studies do not capture individual differences in network organization, an important prerequisite for understanding neural substrates shaping behavior and for developing interventions in clinical conditions. Recent studies have employed “fingerprinting” analyses on functional connectivity to identify subjects’ idiosyncratic features. Here, we develop a complementary approach based on an edge-centric model of functional connectivity, which focuses on the co-fluctuations of edges. We first show whole-brain edge functional connectivity (eFC) to be a robust substrate that improves identifiability over nodal FC (nFC) across different datasets and parcellations. Next, we characterized subjects’ identifiability at different spatial scales, from single nodes to the level of functional systems and clusters using k-means clustering. Across spatial scales, we find that heteromodal brain regions exhibit consistently greater identifiability than unimodal, sensorimotor, and limbic regions. Lastly, we show that identifiability can be further improved by reconstructing eFC using specific subsets of its principal components. In summary, our results highlight the utility of the edge-centric network model for capturing meaningful subject-specific features and sets the stage for future investigations into individual differences using edge-centric models.
0

The reliability and heritability of cortical folds and their genetic correlations across hemispheres

Fabrizio Pizzagalli et al.May 7, 2020
+15
Q
G
F
Abstract The structure of the brain’s cortical folds varies considerably in human populations. Specific patterns of cortical variation arise with development and aging, and cortical traits are partially influenced by genetic factors. The degree to which genetic factors affect cortical folding patterning remains unknown, yet may be estimated with large-scale in-vivo brain MRI. Using multiple MRI datasets from around the world, we estimated the reliability and heritability of sulcal morphometric characteristics including length, depth, width, and surface area, for 61 sulci per hemisphere of the human brain. Reliability was assessed across four distinct test-retest datasets. We meta-analyzed the heritability across three independent family-based cohorts (N > 3,000), and one cohort of largely unrelated individuals (N~9,000) to examine the robustness of our findings. Reliability was high (interquartile range for ICC: 0.65−0.85) for sulcal metrics. Most sulcal measures were moderately to highly heritable (heritability estimates = 0.3−0.7). These genetic influences vary regionally, with the earlier forming sulci having higher heritability estimates. The central sulcus, the subcallosal and the collateral fissure were the most highly heritable regions. For some frontal and temporal sulci, left and right genetic influences did not completely overlap, suggesting some lateralization of genetic effects on the cortex.
0
Citation5
0
Save
Load More