EC
E. Campbell
Author with expertise in Laser-Plasma Interactions and Particle Acceleration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(36% Open Access)
Cited by:
7,714
h-index:
49
/
i10-index:
131
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ignition and high gain with ultrapowerful lasers*

M. Tabak et al.May 1, 1994
Ultrahigh intensity lasers can potentially be used in conjunction with conventional fusion lasers to ignite inertial confinement fusion (ICF) capsules with a total energy of a few tens of kilojoules of laser light, and can possibly lead to high gain with as little as 100 kJ. A scheme is proposed with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration. Second, a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high-density core of the capsule by the ponderomotive force associated with high-intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high-intensity laser–plasma interactions, which then propagate from critical density to this high-density core. This new scheme also drastically reduces the difficulty of the implosion, and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultrahigh-intensity laser and of transporting this energy to the fuel.
1

DSS-induced inflammation in the colon drives a pro-inflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod

Sarah Talley et al.Sep 23, 2021
Background: Inflammatory Bowel Disease (IBD) is established to drive pathological sequelae in organ systems outside the intestine, including the central nervous system (CNS). Many patients exhibit cognitive deficits, particularly during disease flare. The connection between colonic inflammation and neuroinflammation remains unclear and characterization of the neuroinflammatory phenotype in the brain during colitis is ill-defined. Methods: Transgenic mice expressing a bioluminescent reporter of active caspase-1 were treated with 2% Dextran Sodium Sulfate (DSS) for 7 days to induce acute colitis, and colonic, systemic and neuroinflammation were assessed. In some experiments, mice were prophylactically treated with paquinimod (ABR-215757) to inhibit S100A9 inflammatory signaling. As a positive control for peripheral-induced neuroinflammation, mice were injected with lipopolysaccharide (LPS). Colonic, systemic and brain inflammatory cytokines and chemokines were measured by cytokine bead array (CBA) and Proteome profiler mouse cytokine array. Bioluminescence was quantified in the brain and caspase activation was confirmed by immunoblot. Immune cell infiltration into the CNS was measured by flow cytometry, while light sheet microscopy was used to monitor changes in resident microglia localization in intact brains during DSS or LPS-induced neuroinflammation. RNA sequencing was performed to identify transcriptomic changes occurring in the CNS of DSS-treated mice. Expression of inflammatory biomarkers were quantified in the brain and serum by qRT-PCR, ELISA and WB. Results: DSS-treated mice exhibited clinical hallmarks of colitis, including weight loss, colonic shortening and inflammation in the colon. We also detected a significant increase in inflammatory cytokines in the serum and brain, as well as caspase and microglia activation in the brain of mice with ongoing colitis. RNA sequencing of brains isolated from DSS-treated mice revealed differential expression of genes involved in the regulation of inflammatory responses. This inflammatory phenotype was similar to the signature detected in LPS-treated mice, albeit less robust and transient, as inflammatory gene expression returned to baseline following cessation of DSS. Pharmacological inhibition of S100A9, one of the transcripts identified by RNA sequencing, attenuated colitis severity and systemic and neuroinflammation. Conclusions: Our findings suggest that local inflammation in the colon drives systemic inflammation and neuroinflammation, and this can be ameliorated by inhibition of the S100 alarmin, S100A9.
1
Citation1
0
Save
Load More