JC
Julien Chapuis
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,111
h-index:
23
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The structure of an amyloid precursor protein/talin complex indicates a mechanical basis of Alzheimer’s disease

Charles Ellis et al.Nov 1, 2024
Misprocessing of amyloid precursor protein (APP) is one of the major causes of Alzheimer’s disease. APP comprises a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding NPxY motifs in the cytoplasmic tail of integrins. Here, we report the crystal structure of an APP/talin1 complex identifying a new way to couple the cytoskeletal machinery to synaptic sites through APP. Proximity ligation assay (PLA) confirmed the close proximity of talin1 and APP in primary neurons, and talin1 depletion had a dramatic effect on APP processing in cells. Structural modelling reveals APP might form an extracellular meshwork that mechanically couples the cytoskeletons of the pre- and post-synaptic compartments. We propose APP processing represents a mechanical signalling pathway whereby under tension, the cleavage sites in APP have varying accessibility to cleavage by secretases. This leads us to propose a new hypothesis for Alzheimer’s, where misregulated APP dynamics result in loss of the mechanical integrity of the synapse, corruption and loss of mechanical binary data, and excessive generation of toxic plaque-forming Aβ42 peptide.
0
Citation1
0
Save
0

Pyk2 Overexpression in Postsynaptic Neurons Blocks Aβ1-42-induced Synaptotoxicity in a Microfluidic Co-Culture Model

Devrim Kilinc et al.Dec 21, 2019
Abstract Recent meta-analyses of genome-wide association studies identified a number of genetic risk factors of Alzheimer’s disease; however, little is known about the mechanisms by which they contribute to the pathological process. As synapse loss is observed at the earliest stage of Alzheimer’s disease, deciphering the impact of Alzheimer’s risk genes on synapse formation and maintenance is of great interest. In this paper, we report a microfluidic co-culture device that physically isolates synapses from pre- and postsynaptic neurons and chronically exposes them to toxic amyloid-beta (Aβ) peptides secreted by model cell lines overexpressing wild-type or mutated (V717I) amyloid precursor protein (APP). Co-culture with cells overexpressing mutated APP exposed the synapses of primary hippocampal neurons to Aβ 1-42 molecules at nanomolar concentrations and induced a significant decrease in synaptic connectivity, as evidenced by distance-based assignment of postsynaptic puncta to presynaptic puncta. Treating the cells with antibodies that target different forms of Aβ suggested that low molecular weight oligomers are the likely culprit. As proof of concept, we demonstrate that overexpression of protein tyrosine kinase 2 beta (Pyk2) –an Alzheimer’s disease genetic risk factor involved in synaptic plasticity and shown to decrease in Alzheimer’s disease brains at gene expression and protein levels–selectively in postsynaptic neurons is protective against Aβ 1-42 -induced synaptotoxicity. In summary, our lab-on-a-chip device provides a physiologically-relevant model of Alzheimer’s disease-related synaptotoxicity, optimal for assessing the impact of risk genes in pre- and postsynaptic compartments.
0
Citation1
0
Save
0

The structure of an Amyloid Precursor Protein/talin complex indicates a mechanical basis of Alzheimer’s Disease

Charles Ellis et al.Mar 6, 2024
Misprocessing of Amyloid Precursor Protein (APP) is one of the major causes of Alzheimer's disease. APP is a transmembrane protein comprising a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding to one of two highly conserved NPxY motifs in the cytoplasmic tail of integrin transmembrane receptors. Here we report the crystal structure of an APP/talin1 complex identifying a new way to couple the cytoskeletal machinery to synaptic sites via APP. Proximity Ligation Assay (PLA) confirmed the close proximity of talin1 and APP in primary neurons, and we show that talin1 depletion has a dramatic effect on APP processing in cells. Structural modelling indicates that APP has the capacity to form an extracellular meshwork that mechanically couples the cytoskeletal meshworks of both the pre-, and post-synaptic compartments. In this context, we propose APP processing as a mechanical signalling pathway with similarities to Notch signalling, whereby the cleavage sites in APP represent mechanical sensors, with varying accessibility to cleavage by secretases. During synaptogenesis in healthy neurons, the APP/talin linkage would provide an exquisite mechanical coupling between synapses, with tightly controlled APP processing providing instructions to maintain this synchrony. Furthermore, APP directly coupling to the binary switches in talin indicates a role for APP in mechanical memory storage as postulated by the MeshCODE theory. The implication that APP is a regulator of mechanical signalling leads to a new hypothesis for Alzheimer's disease, where mis-regulation of APP dynamics results in loss of mechanical integrity of the synapse, corruption and loss of mechanical binary data, and excessive generation of the toxic plaque-forming Aβ42 peptide. Much needs to be done to experimentally validate this idea, but we present here a novel theory of Alzheimer's Disease with a role for APP in the mechanically coded binary information storage in the synapse, which identifies a potential novel therapeutic strategy for treating Alzheimer's Disease.
0
Citation1
0
Save
0

BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation

Maxime Sartori et al.Nov 7, 2018
The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however, unlike TgMAPT mice, TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After sacrifice of the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified, among others, an inhibitor of Calcineurin, a Ser/Thr phosphatase. We determined that Calcineurin dephosphorylates a Cyclin-dependent kinase phosphorylation site at T348 that shifts the dynamic equilibrium of the open/closed conformation of the neuronal BIN1 isoform towards the open form. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that the levels of the neuronal BIN1 isoform were decreased in AD brains, whereas phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Any increase in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.
0

Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner

Fanny Eysert et al.Sep 13, 2019
Although APP metabolism is being intensively investigated, a large fraction of its modulators are yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer’s disease (AD), as a potential key modulator of axon guidance; a neuronal process dependent on the APP metabolism regulation. We found that FERMT2 directly interacts with APP to modulate its metabolism and that FERMT2 under-expression impacts axonal growth, synaptic connectivity and long-term potentiation in an APP-dependent manner. Lastly, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3’UTR of FERMT2, induced a down-regulation of FERMT2 expression through binding of miR-4504. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 under-expression in neurons and insight on how this may influence AD pathogenesis.