PM
Patrik Magnusson
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
63
(68% Open Access)
Cited by:
17,596
h-index:
139
/
i10-index:
390
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association analysis identifies 13 new risk loci for schizophrenia

Stephan Ripke et al.Aug 25, 2013
Patrick Sullivan and colleagues report a multi-stage genome-wide association study for schizophrenia in a Swedish population. They identify 13 loci newly associated with schizophrenia. Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300–10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
0
Citation1,480
0
Save
0

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell et al.Jan 22, 2014
Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease. Exome sequence analysis of more than 5,000 schizophrenia cases and controls identifies a polygenic burden primarily arising from rare, disruptive mutations distributed across many genes, among which are those encoding voltage-gated calcium ion channels and the signalling complex formed by the ARC protein of the postsynaptic density; as in autism, mutations were also found in homologues of known targets of the fragile X mental retardation protein. Two major sequencing studies of the exome — the protein-coding portion of the genome — in schizophrenia sufferers and their relatives are published in this issue of Nature. Together they provide strong pointers to specific pathogenic mechanisms that disrupt the glutamatergic synapses in schizophrenia. In particular, mutations that influence the action of the scaffold protein ARC (activity-regulated cytoskeleton-associated protein) are prominently involved, as are mutations in targets of the fragile X mental retardation protein (FMRP). Defects in FMRP have previously been shown to be associated with autism spectrum disorders.
0
Citation1,370
0
Save
0

Identification of seven loci affecting mean telomere length and their association with disease

Veryan Codd et al.Mar 27, 2013
Nilesh Samani and colleagues report a meta-analysis of genome-wide association studies for mean leukocyte telomere length in 37,684 individuals, with replication of selected variants in an additional 10,739 individuals. They identify seven loci associated with mean telomere length, including two that have been associated with several cancers, and also find that alleles associated with shorter telomere length were associated with a higher risk of coronary artery disease. Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci, including five new loci, associated with mean LTL (P < 5 × 10−8). Five of the loci contain candidate genes (TERC, TERT, NAF1, OBFC1 and RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all 7 loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of coronary artery disease (21% (95% confidence interval, 5–35%) per standard deviation in LTL, P = 0.014). Our findings support a causal role of telomere-length variation in some age-related diseases.
0
Citation869
0
Save
0

Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts

Yurii Aulchenko et al.Dec 7, 2008
Recent genome-wide association (GWA) studies of lipids have been conducted in samples ascertained for other phenotypes, particularly diabetes. Here we report the first GWA analysis of loci affecting total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglycerides sampled randomly from 16 population-based cohorts and genotyped using mainly the Illumina HumanHap300-Duo platform. Our study included a total of 17,797-22,562 persons, aged 18-104 years and from geographic regions spanning from the Nordic countries to Southern Europe. We established 22 loci associated with serum lipid levels at a genome-wide significance level (P < 5 x 10(-8)), including 16 loci that were identified by previous GWA studies. The six newly identified loci in our cohort samples are ABCG5 (TC, P = 1.5 x 10(-11); LDL, P = 2.6 x 10(-10)), TMEM57 (TC, P = 5.4 x 10(-10)), CTCF-PRMT8 region (HDL, P = 8.3 x 10(-16)), DNAH11 (LDL, P = 6.1 x 10(-9)), FADS3-FADS2 (TC, P = 1.5 x 10(-10); LDL, P = 4.4 x 10(-13)) and MADD-FOLH1 region (HDL, P = 6 x 10(-11)). For three loci, effect sizes differed significantly by sex. Genetic risk scores based on lipid loci explain up to 4.8% of variation in lipids and were also associated with increased intima media thickness (P = 0.001) and coronary heart disease incidence (P = 0.04). The genetic risk score improves the screening of high-risk groups of dyslipidemia over classical risk factors.
0
Citation846
0
Save
0

Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

Rebecca Sims et al.Jul 17, 2017
Sven van der Lee, Julie Williams, Gerard Schellenberg and colleagues identify rare coding variants in PLCG2, ABI3 and TREM2 associated with Alzheimer's disease. These genes are highly expressed in microglia and provide additional evidence that the microglia-mediated immune response contributes to the development of Alzheimer's disease. We identified rare coding variants associated with Alzheimer's disease in a three-stage case–control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10−4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10−8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10−10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10−10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10−14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein–protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.
0
Citation846
0
Save
0

Common variants associated with plasma triglycerides and risk for coronary artery disease

Ron Do et al.Oct 6, 2013
Sekar Kathiresan and colleagues examine 185 common variants using a modified mendelian randomization approach and provide evidence supporting a causal role of triglyceride-rich lipoproteins in the development of coronary artery disease. Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10−8 for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.
0
Citation808
0
Save
0

Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index

Jian Yang et al.Aug 31, 2015
Jian Yang and colleagues present a method, GREML-LDMS, to estimate heritability for complex human traits using whole-genome sequencing data or imputation with the 1000 Genomes Project reference panel. Using the heritability estimates from GREML-LDMS, they find that there is negligible missing heritability for human height and BMI. We propose a method (GREML-LDMS) to estimate heritability for human complex traits in unrelated individuals using whole-genome sequencing data. We demonstrate using simulations based on whole-genome sequencing data that ∼97% and ∼68% of variation at common and rare variants, respectively, can be captured by imputation. Using the GREML-LDMS method, we estimate from 44,126 unrelated individuals that all ∼17 million imputed variants explain 56% (standard error (s.e.) = 2.3%) of variance for height and 27% (s.e. = 2.5%) of variance for body mass index (BMI), and we find evidence that height- and BMI-associated variants have been under natural selection. Considering the imperfect tagging of imputation and potential overestimation of heritability from previous family-based studies, heritability is likely to be 60–70% for height and 30–40% for BMI. Therefore, the missing heritability is small for both traits. For further discovery of genes associated with complex traits, a study design with SNP arrays followed by imputation is more cost-effective than whole-genome sequencing at current prices.
0
Citation786
0
Save
Load More