MS
Maxx Swoger
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
35
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Extracellular vimentin as a target against SARS-CoV-2 host cell invasion

Łukasz Suprewicz et al.Jan 8, 2021
+13
S
M
Ł
Abstract Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens’ cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.
16
Citation21
0
Save
20

Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a Microenvironmental Stiffness-Dependent Manner

Farid Alisafaei et al.Apr 4, 2022
+5
M
K
F
Abstract The mechanical properties of cells are largely determined by the cytoskeleton, which is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. While disruption of the actin filament and microtubule networks is known to decrease and increase cell-generated forces, respectively, the effect of intermediate filaments on cellular forces is not well understood. Using a combination of theoretical modeling and experiments, we show that disruption of vimentin intermediate filaments can either increase or decrease cell-generated forces, depending on microenvironment stiffness, reconciling seemingly opposite results in the literature. On the one hand, vimentin is involved in the transmission of actomyosin-based tensile forces to the matrix and therefore enhances traction forces. On the other hand, vimentin reinforces microtubules and their stability under compression, thus promoting the role of microtubules in suppressing cellular traction forces. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. For low matrix stiffness, the force-transmitting role of vimentin dominates over their microtubule-reinforcing role and therefore vimentin increases traction forces. At high matrix stiffness, vimentin decreases traction forces as the microtubule-reinforcing role of vimentin becomes more important with increasing matrix stiffness. Our theory reconciles seemingly disparate experimental observations on the role of vimentin in active cellular forces and provides a unified description of stiffness-dependent chemo-mechanical regulation of cell contractility by vimentin. Significance Vimentin is a marker of the epithelial to mesenchymal transition which takes place during important biological processes including embryogenesis, metastasis, tumorigenesis, fibrosis, and wound healing. While the roles of the actin and microtubule networks in the transmission of cellular forces to the extracellular matrix are known, it is not clear how vimentin intermediate filaments impact cellular forces. Here, we show that vimentin impacts cellular forces in a matrix stiffness-dependent manner. Disruption of vimentin in cells on soft matrices reduces cellular forces, while it increases cellular forces in cells on stiff matrices. Given that cellular forces are central to both physiological and pathological processes, our study has broad implications for understanding the effect of vimentin on cellular forces in different microenvironments.
20
Citation7
0
Save
0

Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks

Farid Alisafaei et al.May 29, 2024
+9
M
R
F
The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin's effects on the transmission of cell contractile forces to the extracellular matrix.
0
Citation4
0
Save
25

Rab11 endosomes coordinate centrosome number and movement following mitotic exit

Nikhila Krishnan et al.Aug 11, 2021
+4
M
M
N
SUMMARY The last stage of cell division involves two daughter cells remaining interconnected by a cytokinetic bridge that is cleaved in a process called abscission. During pre-abscission, we identified that the centrosome moves in a Rab11-dependent manner towards the cytokinetic bridge in human cells grown in culture and in an in vivo vertebrate model, Danio rerio (zebrafish). Rab11-endosomes are dynamically organized in a Rab11-GTP dependent manner at the centrosome during pre-abscission and this organization is required for the centrosome protein, pericentrin, to be enriched at the centrosome. Using zebrafish embryos, we found that reduction in pericentrin expression or optogenetically disrupting Rab11-endosome function inhibited centrosome movement towards the cytokinetic bridge and abscission resulting in daughter cells prone to being binucleated and/or having supernumerary centrosomes. These studies suggest that Rab11-endosomes contribute to centrosome function during pre-abscission by regulating pericentrin organization resulting in appropriate centrosome movement towards the cytokinetic bridge and subsequent abscission.
25
Citation2
0
Save
0

Vimentin intermediate filaments mediate cell shape on visco-elastic substrates

Maxx Swoger et al.Sep 8, 2020
+3
E
S
M
Abstract The ability of cells to take and change shape is a fundamental feature underlying development, wound repair, and tissue maintenance. Central to this process is physical and signaling interactions between the three cytoskeletal polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that is essential to the mechanical resilience of cells and regulates cross-talk amongst the cytoskeleton, but its role in how cells sense and respond to the surrounding extracellular matrix is largely unclear. To investigate vimentin’s role in substrate sensing, we designed polyacrylamide hydrogels that mimic the elastic and viscoelastic nature of in vivo tissues. Using wild-type and vimentin-null mouse embryonic fibroblasts, we show that vimentin enhances cell spreading on viscoelastic substrates, even though it has little effect in the limit of purely elastic substrates. Our results provide compelling evidence that the vimentin cytoskeletal network is a physical modulator of how cells sense and respond to mechanical properties of their extracellular environment.
0
Citation1
0
Save