RC
Ran Cui
Author with expertise in Genomic Selection in Plant and Animal Breeding
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
291
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Functionally-informed fine-mapping and polygenic localization of complex trait heritability

Omer Weissbrod et al.Oct 17, 2019
Abstract Fine-mapping aims to identify causal variants impacting complex traits. Several recent methods improve fine-mapping accuracy by prioritizing variants in enriched functional annotations. However, these methods can only use information at genome-wide significant loci (or a small number of functional annotations), severely limiting the benefit of functional data. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy using genome-wide functional data for a broad set of coding, conserved, regulatory and LD-related annotations. PolyFun prioritizes variants in enriched functional annotations by specifying prior causal probabilities for fine-mapping methods such as SuSiE or FINEMAP, employing special procedures to ensure robustness to model misspecification and winner’s curse. In simulations with in-sample LD, PolyFun + SuSiE and PolyFun + FINEMAP were well-calibrated and identified >20% more variants with posterior causal probability >0.95 than their non-functionally informed counterparts (and >33% more fine-mapped variants than previous functionally-informed fine-mapping methods). In simulations with mismatched reference LD, PolyFun + SuSiE remained well-calibrated when reducing the maximum number of assumed causal SNPs per locus, which reduces absolute power but still produces large relative improvements. In analyses of 49 UK Biobank traits (average N =318K) with in-sample LD, PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement vs. SuSiE; 223 variants were fine-mapped for multiple genetically uncorrelated traits, indicating pervasive pleiotropy. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures.
0
Citation20
0
Save
0

Functional dissection of complex and molecular trait variants at single nucleotide resolution

Layla Siraj et al.May 6, 2024
Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.
0
Citation1
0
Save