DO
Desmond Oathes
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(83% Open Access)
Cited by:
2,987
h-index:
29
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Resting-state connectivity biomarkers define neurophysiological subtypes of depression

Andrew Drysdale et al.Dec 5, 2016
Biomarkers have transformed modern medicine but remain largely elusive in psychiatry, partly because there is a weak correspondence between diagnostic labels and their neurobiological substrates. Like other neuropsychiatric disorders, depression is not a unitary disease, but rather a heterogeneous syndrome that encompasses varied, co-occurring symptoms and divergent responses to treatment. By using functional magnetic resonance imaging (fMRI) in a large multisite sample (n = 1,188), we show here that patients with depression can be subdivided into four neurophysiological subtypes ('biotypes') defined by distinct patterns of dysfunctional connectivity in limbic and frontostriatal networks. Clustering patients on this basis enabled the development of diagnostic classifiers (biomarkers) with high (82-93%) sensitivity and specificity for depression subtypes in multisite validation (n = 711) and out-of-sample replication (n = 477) data sets. These biotypes cannot be differentiated solely on the basis of clinical features, but they are associated with differing clinical-symptom profiles. They also predict responsiveness to transcranial magnetic stimulation therapy (n = 154). Our results define novel subtypes of depression that transcend current diagnostic boundaries and may be useful for identifying the individuals who are most likely to benefit from targeted neurostimulation therapies.
0

Development of structure–function coupling in human brain networks during youth

Graham Baum et al.Dec 24, 2019
The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure–function coupling using diffusion-weighted imaging and n -back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure–function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure–function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data ( n = 294). Moreover, structure–function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.
0

Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response

Jack Nitschke et al.Jan 3, 2009
Objective: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Method: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Results: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. Conclusions: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
68

QSIPrep: An integrative platform for preprocessing and reconstructing diffusion MRI

Matthew Cieslak et al.Sep 4, 2020
ABSTRACT Diffusion-weighted magnetic resonance imaging (dMRI) has become the primary method for non-invasively studying the organization of white matter in the human brain. While many dMRI acquisition sequences have been developed, they all sample q-space in order to characterize water diffusion. Numerous software platforms have been developed for processing dMRI data, but most work on only a subset of sampling schemes or implement only parts of the processing workflow. Reproducible research and comparisons across dMRI methods are hindered by incompatible software, diverse file formats, and inconsistent naming conventions. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing upon a diverse set of software suites to capitalize upon their complementary strengths, QSIPrep automatically applies best practices for dMRI preprocessing, including denoising, distortion correction, head motion correction, coregistration, and spatial normalization. Throughout, QSIPrep provides both visual and quantitative measures of data quality as well as “glass-box” methods reporting. Taken together, these features facilitate easy implementation of best practices for processing of diffusion images while simultaneously ensuring reproducibility.
0

Individualized non-invasive brain stimulation engages the subgenual anterior cingulate and amygdala

Desmond Oathes et al.Dec 21, 2018
Brain stimulation is used clinically to treat a variety of neurological and psychiatric conditions. The mechanisms of the clinical effects of these brain-based therapies are presumably dependent on their effects on brain networks. It has been hypothesized that using individualized brain network maps is an optimal strategy for defining network boundaries and topologies. Traditional non-invasive imaging can determine correlations between structural or functional time series. However, they cannot easily establish hierarchies in communication flow as done in non-human animals using invasive methods. In the present study, we interleaved functional MRI recordings with non-invasive transcranial magnetic stimulation in the attempt to map causal communication between the prefrontal cortex and two subcortical structures thought to contribute to affective dysregulation: the subgenual anterior cingulate cortex (sgACC) and the amygdala. In both cases, we found evidence that these brain areas were engaged when TMS was applied to prefrontal sites determined from each participant's previous fMRI scan. Specifically, after transforming individual participant images to within-scan quantiles of evoked TMS response, we modeled the average quantile response within a given region across stimulation sites and individuals to demonstrate that the targets were differentially influenced by TMS. Furthermore, we found that the sgACC distributed brain network, estimated in a separate cohort, was engaged in response to sgACC focused TMS and was partially separable from the proximal default mode network response. The amygdala, but not its distributed network, responded to TMS. Our findings indicate that individual targeting and brain response measurements usefully capture causal circuit mapping to the sgACC and amygdala in humans, setting the stage for approaches to non-invasively modulate subcortical nodes of distributed brain networks in clinical interventions and mechanistic human neuroscience studies.
1

Diffusion MRI Head Motion Correction Methods are Highly Accurate but Impacted by Denoising and Sampling Scheme

Matthew Cieslak et al.Jul 22, 2022
ABSTRACT Correcting head motion artifacts in diffusion-weighted MRI (dMRI) scans is particularly challenging due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL’s Eddy. Recently, the 3dSHORE-based SHORELine method was introduced to correct any dMRI sequence that has more than one shell. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme, the pervasiveness of head motion, and the denoising strategy applied before head motion correction. Our study also provides an open and fully-reproducible workflow that could be used to accelerate evaluation studies of other dMRI processing methods in the future. HIGHLIGHTS Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data Denoising with MP-PCA can improve head motion correction performance when Eddy is used SHORELine effectively corrects motion in non-shelled acquisitions
1
Paper
Citation5
0
Save
1

Proof of concept study to develop a novel connectivity-based electric-field modelling approach for individualized targeting of transcranial magnetic stimulation treatment

Nicholas Balderston et al.Dec 7, 2020
Abstract Background Resting state functional connectivity (rsFC) offers promise for individualizing stimulation targets for transcranial magnetic stimulation (TMS) treatments. However current targeting approaches do not account for non-focal TMS effects or large-scale connectivity patterns. To overcome these limitations, we propose a novel targeting optimization approach that combines whole-brain rsFC and electric-field (e-field) modelling to identify single-subject, symptom-specific TMS targets. Methods In this proof of concept study, we recruited 91 anxious misery (AM) patients and 25 controls. We measured depression symptoms (MADRS/HAMD) and recorded rsFC. We used a PCA regression to predict symptoms from rsFC and estimate the parameter vector, for input into our e-field augmented model. We modeled 17 left dlPFC and 7 M1 sites using 24 equally spaced coil orientations. We computed single-subject predicted ΔMADRS/HAMD scores for each site/orientation using the e-field augmented model, which comprises a linear combination of the following elementwise products 1) the estimated connectivity/symptom coefficients, 2) a vectorized e-field model for site/orientation, 3) the pre-treatment rsFC matrix, scaled by a proportionality constant. Results In AM patients, our pre-stimulation connectivity-based model predicted a significant decrease depression for sites near BA46, but not M1 for coil orientations perpendicular to the cortical gyrus. In control subjects, no site/orientation combination showed a significant predicted change. Discussion These results corroborate previous work suggesting the efficacy of left dlPFC stimulation for depression treatment, and predict better outcomes with individualized targeting. They also suggest that our novel connectivity-based e-field modelling approach may effectively identify potential TMS treatment responders and individualize TMS targeting to maximize the therapeutic impact.
Load More