DR
David Roalf
Author with expertise in Analysis of Brain Functional Connectivity Networks
University of Pennsylvania, Lifespan, California University of Pennsylvania
+ 10 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
38
(53% Open Access)
Cited by:
57
h-index:
57
/
i10-index:
123
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
68

QSIPrep: An integrative platform for preprocessing and reconstructing diffusion MRI

Matthew Cieslak et al.Oct 13, 2023
+39
X
P
M
ABSTRACT Diffusion-weighted magnetic resonance imaging (dMRI) has become the primary method for non-invasively studying the organization of white matter in the human brain. While many dMRI acquisition sequences have been developed, they all sample q-space in order to characterize water diffusion. Numerous software platforms have been developed for processing dMRI data, but most work on only a subset of sampling schemes or implement only parts of the processing workflow. Reproducible research and comparisons across dMRI methods are hindered by incompatible software, diverse file formats, and inconsistent naming conventions. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing upon a diverse set of software suites to capitalize upon their complementary strengths, QSIPrep automatically applies best practices for dMRI preprocessing, including denoising, distortion correction, head motion correction, coregistration, and spatial normalization. Throughout, QSIPrep provides both visual and quantitative measures of data quality as well as “glass-box” methods reporting. Taken together, these features facilitate easy implementation of best practices for processing of diffusion images while simultaneously ensuring reproducibility.
64

Personalized Functional Brain Network Topography Predicts Individual Differences in Youth Cognition

Arielle Keller et al.Oct 24, 2023
+21
V
A
A
Abstract Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain’s functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development SM Study. Across matched discovery (n=3,525) and replication (n=3,447) samples, the total cortical representation of fronto-parietal PFNs positively correlated with general cognition. Cross-validated ridge regressions trained on PFN topography predicted cognition across domains, with prediction accuracy increasing along the cortex’s sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
64
Citation7
0
Save
59

ASLPrep: A Generalizable Platform for Processing of Arterial Spin Labeled MRI and Quantification of Regional Brain Perfusion

Azeez Adebimpe et al.Oct 24, 2023
+31
S
M
A
ABSTRACT Arterial spin labeled (ASL) magnetic resonance imaging (MRI) is the primary method for non-invasively measuring regional brain perfusion in humans. We introduce ASLPrep, a suite of software pipelines that ensure the reproducible and generalizable processing of ASL MRI data.
1

Diffusion MRI Head Motion Correction Methods are Highly Accurate but Impacted by Denoising and Sampling Scheme

Matthew Cieslak et al.Oct 24, 2023
+9
T
P
M
ABSTRACT Correcting head motion artifacts in diffusion-weighted MRI (dMRI) scans is particularly challenging due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL’s Eddy. Recently, the 3dSHORE-based SHORELine method was introduced to correct any dMRI sequence that has more than one shell. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme, the pervasiveness of head motion, and the denoising strategy applied before head motion correction. Our study also provides an open and fully-reproducible workflow that could be used to accelerate evaluation studies of other dMRI processing methods in the future. HIGHLIGHTS Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data Denoising with MP-PCA can improve head motion correction performance when Eddy is used SHORELine effectively corrects motion in non-shelled acquisitions
83

A Developmental Reduction of the Excitation:Inhibition Ratio in Association Cortex during Adolescence

Bart Larsen et al.Oct 24, 2023
+12
A
Z
B
Abstract Adolescence is hypothesized to be a critical period for the development of association cortex. A reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period development; however it has been unclear how to assess the development of the E:I ratio using non-invasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate patterns of functional connectivity. In an independent sample of 879 youth (ages 8-22 years), this model predicted reductions in the E:I ratio during adolescence, which were specific to association cortex and related to psychopathology. These findings support hypothesized shifts in E:I balance of association cortices during a neurodevelopmental critical period in adolescence. Teaser Inhibitory maturation of the association cortex reflects an adolescent critical period.
58

ModelArray: a memory-efficient R package for statistical analysis of fixel data

Chenying Zhao et al.Oct 24, 2023
+14
J
T
C
ABSTRACT Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel data exist, currently available tools are memory intensive, difficult to scale to large datasets, and support only a limited number of statistical models. Here we introduce ModelArray, a memory-efficient R package for mass-univariate statistical analysis of fixel data. With only several lines of code, even large fixel datasets can be analyzed using a standard personal computer. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n=938). ModelArray required far less memory than existing tools and revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides an efficient and flexible platform for statistical analysis of fixel data. HIGHLIGHTS ModelArray is an R package for mass-univariate statistical analysis of fixel data ModelArray is memory-efficient even for large-scale datasets ModelArray supports linear and nonlinear modeling and is extensible to more models ModelArray facilitates easy statistical analysis of large-scale fixel data Graphical abstract
27

Developmental coupling of cerebral blood flow and fMRI fluctuations in youth

Erica Baller et al.Oct 24, 2023
+18
A
A
E
ABSTRACT To support brain development during youth, the brain must balance energy delivery and consumption. Previous studies in adults have demonstrated high coupling between cerebral blood flow and brain function as measured using functional neuroimaging, but how this relationship evolves over adolescence is unknown. To address this gap, we studied a sample of 831 children and adolescents (478 females, ages 8-22) from the Philadelphia Neurodevelopmental Cohort who were scanned at 3T with both arterial spin labeled (ASL) MRI and resting-state functional MRI (fMRI). Local coupling between cerebral blood flow (CBF, from ASL) and the amplitude of low frequency fluctuations (ALFF, from fMRI) was first quantified using locally weighted regressions on the cortical surface. We then used generalized additive models to evaluate how CBF-ALFF coupling was associated with age, sex, and executive function. Enrichment of effects within canonical functional networks was evaluated using spin-based permutation tests. Our analyses revealed tight CBF-ALFF coupling across the brain. Whole-brain CBF-ALFF coupling decreased with age, largely driven by coupling decreases in the inferior frontal cortex, precuneus, visual cortex, and temporoparietal cortex ( p fdr <0.05). Females had stronger coupling in the frontoparietal network than males ( p fdr <0.05). Better executive function was associated with decreased coupling in the somatomotor network ( p fdr <0.05). Overall, we found that CBF-ALFF coupling evolves in development, differs by sex, and is associated with individual differences in executive function. Future studies will investigate relationships between maturational changes in CBF-ALFF coupling and the presence of psychiatric symptoms in youth. SIGNIFICANCE The functions of the human brain are metabolically expensive and reliant on coupling between cerebral blood flow and neural activity. Previous neuroimaging studies in adults demonstrate tight physiology-function coupling, but how this coupling evolves over development is unknown. Here, we examine the relationship between blood flow as measured by arterial spin labeling and the amplitude of low frequency fluctuations from resting-state magnetic resonance imaging across a large sample of youth. We demonstrate regionally specific changes in coupling over age and show that variations in coupling are related to biological sex and executive function. Our results highlight the importance of CBF-ALFF coupling throughout development; we discuss its potential as a future target for the study of neuropsychiatric diseases.
0

Context-dependent architecture of brain state dynamics is explained by white matter connectivity and theories of network control

Eli Cornblath et al.May 7, 2020
+12
J
A
E
A diverse white matter network and finely tuned neuronal membrane properties allow the brain to transition seamlessly between cognitive states. However, it remains unclear how static structural connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we deploy an unsupervised machine learning algorithm to define brain states as time point level activity patterns from functional magnetic resonance imaging data acquired during passive visual fixation (rest) and an n-back working memory task. We find that brain states are composed of interdigitated functional networks and exhibit context-dependent dynamics. Using diffusion-weighted imaging acquired from the same subjects, we show that structural connectivity constrains the temporal progression of brain states. We also combine tools from network control theory with geometrically conservative null models to demonstrate that brains are wired to support states of high activity in default mode areas, while requiring relatively low energy. Finally, we show that brain state dynamics change throughout development and explain working memory performance. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics.
6

Network controllability mediates the relationship between rigid structure and flexible dynamics

Shi Gu et al.Oct 24, 2023
+6
L
P
S
ABSTRACT Precisely how the anatomical structure of the brain supports a wide range of complex functions remains a question of marked importance in both basic and clinical neuroscience. Progress has been hampered by the lack of theoretical frameworks explaining how a structural network of relatively rigid inter-areal connections can produce a diverse repertoire of functional neural dynamics. Here, we address this gap by positing that the brain’s structural network architecture determines the set of accessible functional connectivity patterns according to predictions of network control theory. In a large developmental cohort of 823 youths aged 8 to 23 years, we found that the flexibility of a brain region’s functional connectivity was positively correlated with the proportion of its structural links extending to different cognitive systems. Notably, this relationship was mediated by nodes’ boundary controllability, suggesting that a region’s strategic location on the boundaries of modules may underpin the capacity to integrate information across different cognitive processes. Broadly, our study provides a mechanistic framework that illustrates how temporal flexibility observed in functional networks may be mediated by the controllability of the underlying structural connectivity. AUTHOR SUMMARY Precisely how the relatively rigid white matter wiring of the human brain gives rise to a diverse repertoire of functional neural dynamics is not well understood. In this work, we combined tools from network science and control theory to address this question. Capitalizing on a large developmental cohort, we demonstrated that the ability of a brain region to flexibly change its functional module allegiance over time (i.e., its modular flexibility), was positively correlated with its proportion of anatomical edges projecting to multiple cognitive networks (i.e., its structural participation coefficient). Moreover, this relationship was strongly mediated by the region’s boundary controllability, a metric capturing its capacity to integrate information across multiple cognitive domains.
0

Network enrichment significance testing in brain–phenotype association studies

Sarah Weinstein et al.Sep 11, 2024
+12
B
S
S
Abstract Functional networks often guide our interpretation of spatial maps of brain–phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain–phenotype associations to functional networks or other sub‐regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large‐scale neurodevelopmental cohort study.
0
Citation1
0
Save
Load More