CH
Christopher Hunter
Author with expertise in Natural Killer Cells in Immunity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(59% Open Access)
Cited by:
9,707
h-index:
70
/
i10-index:
255
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The nature of .pi.-.pi. interactions

Christopher Hunter et al.Jul 1, 1990
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTThe nature of .pi.-.pi. interactionsChristopher A. Hunter and Jeremy K. M. SandersCite this: J. Am. Chem. Soc. 1990, 112, 14, 5525–5534Publication Date (Print):July 1, 1990Publication History Published online1 May 2002Published inissue 1 July 1990https://pubs.acs.org/doi/10.1021/ja00170a016https://doi.org/10.1021/ja00170a016research-articleACS PublicationsRequest reuse permissionsArticle Views36112Altmetric-Citations4529LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
0

Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox

Christopher HunterOct 5, 2004
Molecular recognition events in solution are affected by many different factors that have hampered the development of an understanding of intermolecular interactions at a quantitative level. Our tendency is to partition these effects into discrete phenomenological fields that are classified, named, and divorced: aromatic interactions, cation-pi interactions, CH-O hydrogen bonds, short strong hydrogen bonds, and hydrophobic interactions to name a few.1 To progress in the field, we need to develop an integrated quantitative appreciation of the relative magnitudes of all of the different effects that might influence the molecular recognition behavior of a given system. In an effort to navigate undergraduates through the vast and sometimes contradictory literature on the subject, I have developed an approach that treats theoretical ideas and experimental observations about intermolecular interactions in the gas phase, the solid state, and solution from a single simplistic viewpoint. The key features are outlined here, and although many of the ideas will be familiar, the aim is to provide a semiquantitative thermodynamic ranking of these effects in solution at room temperature.
0

π-π interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins

Christopher Hunter et al.Apr 1, 1991
The geometries of aromatic-aromatic interactions between phenylalanine residues in proteins are analysed in detail and correlated with energy calculations. A new definition of the interplanar angle is important for distinguishing favourable edge-to-face and unfavourable face-to-face orientations. The experimental observations are scattered over a wide range of conformational space, with no strongly preferred single orientation. However, Phe-Phe interactions occur almost exclusively in electrostatically attractive geometries: electrostatically unfavourable regions are only sparsely populated. Electrostatics dominate the geometry of interaction, while van der Waals' interactions are less significant, probably due to the hydrophobic environment of the protein core. The observations on proteins support the Hunter-Sanders rules for π-π interactions. In particular, offset stacked geometries, which theory predicts to be favourable, are observed experimentally. For monocyclic aromatics, use of a CH dipole, the approach used in molecular mechanics calculations, accounts well for these aromatic-aromatic interactions. Comparison with the results obtained from the small molecules database indicates that the protein and small molecule crystal environments are very different.
0

Synthesis and structure elucidation of a new [2]-catenane

Christopher HunterJun 1, 1992
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTSynthesis and structure elucidation of a new [2]-catenaneChristopher A. HunterCite this: J. Am. Chem. Soc. 1992, 114, 13, 5303–5311Publication Date (Print):June 1, 1992Publication History Published online1 May 2002Published inissue 1 June 1992https://pubs.acs.org/doi/10.1021/ja00039a047https://doi.org/10.1021/ja00039a047research-articleACS PublicationsRequest reuse permissionsArticle Views2109Altmetric-Citations408LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-AlertscloseSupporting Info (1)»Supporting Information Supporting Information Get e-Alerts
0

Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage

William Cullen et al.Feb 15, 2016
The hollow cavities of coordination cages can provide an environment for enzyme-like catalytic reactions of small-molecule guests. Here, we report a new example (catalysis of the Kemp elimination reaction of benzisoxazole with hydroxide to form 2-cyanophenolate) in the cavity of a water-soluble M8L12 coordination cage, with two features of particular interest. First, the rate enhancement is among the largest observed to date: at pD 8.5, the value of kcat/kuncat is 2 × 105, due to the accumulation of a high concentration of partially desolvated hydroxide ions around the bound guest arising from ion-pairing with the 16+ cage. Second, the catalysis is based on two orthogonal interactions: (1) hydrophobic binding of benzisoxazole in the cavity and (2) polar binding of hydroxide ions to sites on the cage surface, both of which were established by competition experiments. The Kemp elimination has been catalysed in the cavity of a coordination cage with a rate enhancement (kcat/kuncat) of 200,000 at pD 8.5. The catalysis requires two orthogonal interactions to bring together the components: hydrophobic binding of benzisoxazole, and accumulation of hydroxide ions at the cationic cage surface by ion-pairing.
0

Virtual cocrystal screening

Daniele Musumeci et al.Jan 1, 2011
Calculated gas phase molecular electrostatic potential surfaces have been used to identify sets of H-bond donor and H-bond acceptor sites that describe the possible intermolecular interaction sites on the surface of a molecule. The calculated H-bond parameters, αi and βj, were used to estimate interaction site pairing energies in the solid form of the compound through a hierarchical mapping of complementary donor and acceptor sites: the interaction energy for each contact is simply given by the product −αiβj. The approach assumes that all of the interactions that can be made in the solid are made and that the details of three-dimensional structure and crystal packing are of secondary importance. Comparison of the energy of two pure solids with cocrystals of various stoichiometries gives an energy difference, ΔE, which is a measure of the probability of forming a cocrystal. Tests on an experimental cocrystal screen from the literature and the recall of coformers for caffeine and for carbamazepine from a list of nearly 1,000 candidates have been used to validate the utility of the method. For systems that are experimentally found to form cocrystals, the calculated energy parameter ΔE tends to be very favourable. In the best case, for 846 potential caffeine coformers from the EAFUS list, 80% of the experimentally observed hits are in the top 11% of the ranked list of ΔE values. The results provide a calibration between the value of ΔE and the probability of cocrystal formation: when the cocrystal is favored by more than 11 kJ mol−1 over the two pure solids, the probability of obtaining a cocrystal is better than 50%. An advantage of this approach is that it is sufficiently fast to be used as a high throughput virtual screening tool.
0

Coordination Cages Based on Bis(pyrazolylpyridine) Ligands: Structures, Dynamic Behavior, Guest Binding, and Catalysis

Michael Ward et al.Aug 7, 2018
ConspectusWe describe here a family of coordination cages with interesting structural, guest-binding, and catalytic properties. Flexible bridging ligands containing two bidentate pyrazolylpyridine termini assemble with transition-metal dications to afford coordination cages containing a metal ion at each vertex, a bridging ligand spanning each edge, and a 2:3 metal:ligand ratio. This stoichiometry is expressed in structures ranging from M4L6 tetrahedra to M16L24 tetracapped truncated tetrahedra, which are stabilized by the formation of π-stacked arrays between electron-rich and electron-poor ligand segments that form around the cage periphery. In some cases concentration- and/or temperature-dependent equilibria between multiple cage structures occur, arising from a balance between entropy, which favors the formation of a larger number of smaller assemblies, and enthalpy, which maximizes both interligand aromatic stacking and solvophobic effects in the larger assembles.The cages are hollow and can accommodate guests—often anions or solvent molecules—in the central cavity. For one cage family, M8L12 species with an approximately cubic structure and a ca. 400 Å3 cavity, the guest binding properties have been studied extensively. This cage can accommodate a wide range of neutral organic guests, with binding in water being driven principally by the hydrophobic effect, which leads to binding constants of up to 108 M–1. The accumulation of a large amount of empirical data on guest binding in the M8L12 cage in water provided the basis for a predictive tool for in silico screening of potential guests using the molecular docking program GOLD; this methodology has allowed the identification of numerous new guests with accurately predicted binding constants and provides a transformative new approach to exploring the host/guest chemistry of cages.Binding of benzisoxazole inside the M8L12 cage results in substantial rate enhancements—by a factor of up to 2 × 105—of the Kemp elimination, in which benzisoxazole reacts to give 2-cyanophenolate. Catalysis arises because the 16+ cage cation accumulates anions around the surface by ion pairing, leading to a high effective concentration of hydroxide ions surrounding the guest even when the bulk pH is modest. Thus, the catalysis relies on the operation of two orthogonal interactions that bring the reaction partners together: hydrophobic guest binding in the cavity, which is lined with CH groups from the ligands, and ion pairing around the highly cationic cage surface. A consequence of this is that under some conditions the product of the cage-catalyzed Kemp elimination (the 2-cyanophenolate anion) itself accumulates around the cage surface and deprotonates another benzisoxazole guest, perpetuating the reaction in an autocatalytic manner. Thus, different anions accumulating around the cage can act as partners for reaction with a cavity-bound guest, opening up the possibility that the M8L12 cage can act as a general catalyst for reactions of electrophilic guests with surface-bound anions.
Load More