AM
Anna Moseler
Author with expertise in Dioxygen Activation at Metalloenzyme Active Sites
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
3
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification

Michelle Schlößer et al.Sep 5, 2023
Abstract Class I glutaredoxins (GRXs) are catalytically active oxidoreductases and considered key proteins mediating reversible glutathionylation and deglutathionylation of protein thiols during development and stress responses. To narrow in on putative target proteins, it is mandatory to know the subcellular localization of the respective GRXs and to understand their catalytic activities and putative redundancy between isoforms in the same compartment. We show that GRXC1 and GRXC2 are cytosolic proteins with GRXC1 being attached to membranes through myristoylation. GRXC3 and GRXC4 are identified as type II membrane proteins along the early secretory pathway with their enzymatic function on the luminal side. Comparison of all four studied GRXs for their oxidoreductase function highlights biochemical diversification with GRXC1 and GRXC2 being better reductants than GRXC3 and GRXC4 with bis(2-hydroxyethyl) disulfide and oxidized roGFP2 as substrates. Vice versa , GRXC3 and GRXC4 are better oxidants of reduced roGFP2 in the reverse reaction. Analysis of electrostatic surface potentials mirrors the phylogenetic classification of class I GRXs but cannot fully account for the observed kinetic differences in their interaction with roGPF2. Despite localization of two class I GRXs each in the cytosol and the endomembrane system, the respective double null mutants are viable without obvious phenotypes. Summary statement We identify Arabidopsis glutaredoxins GRXC3 and GRXC4 as type II membrane proteins in the secretory pathway and GRXC1 as attached to membranes through N-terminal myristoylation. Cytosolic GRXC1 and GRXC2 and luminal GRXC3 and GRXC4 display distinct biochemical properties in their redox activities.
1
Citation3
0
Save
0

Redox-mediated Kick-Start of Mitochondrial Energy Metabolism drives Resource-efficient Seed Germination

Thomas Nietzel et al.Jun 20, 2019
Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is re-activated to drive germination when the external conditions are favorable. Since the switchover from quiescence to re-activation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag-based (iodoTMT) thiol redox proteomics. The redox state across all Cys-peptides was shifted towards reduction from 27.1 % to 13.0 %. A large number of Cys-peptides (412) were redox-switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid cycle (TCA). Active site Cys-peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.
0

Branched-chain amino acid catabolism depends on GRXS15 through mitochondrial lipoyl cofactor homeostasis

Anna Moseler et al.Feb 17, 2020
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol and mitochondria. A single monothiol glutaredoxin (GRX) has been shown to be involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homologue GRXS15 has only partially been characterized. Arabidopsis grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype. In an in-depth metabolic analysis, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis and the electron transport chain. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, 2-oxoglutarate, glycine and branched-chain amino acids (BCAAs). The most pronounced accumulation occurred in branched-chain α-keto acids (BCKAs), the first degradation products resulting from deamination of BCAAs. In wild-type plants, pyruvate, 2-oxoglutarate, glycine and BCKAs are all metabolized through decarboxylation by four mitochondrial lipoyl cofactor-dependent dehydrogenase complexes. Because these enzyme complexes are very abundant and the biosynthesis of the lipoyl cofactor depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why lipoyl cofactor-dependent processes are most sensitive to restricted Fe-S supply in GRXS15 K83A mutants.
0

Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems

Laurent Marty et al.Apr 16, 2019
(1) A highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear. (2) We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing.(3) Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ABC transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability. (4) We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.
0

The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18

Benjamin Selles et al.Mar 25, 2020
The biosynthesis of many sulfur-containing biomolecules depends on cysteine as a sulfur source. Cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human. However, their connection is not yet described in plants even though the existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera suggests that the interaction between both proteins should be universal. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain containing protein, the sulfurtransferase 18 (STR18), and a CD isoform, ABA3, and compare these biochemical features to those of a natural CD-Rhd fusion protein from the bacterium Pseudorhodoferax sp.. We found that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using L-cysteine and thiosulfate as sulfur donors. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by recovering the intermediate persulfide on its catalytic cysteine. The ability of STR18 to catalyze trans-persulfidation reactions from ABA3 to a reduced roGFP2 used as a model acceptor protein reveals that the ABA3-STR18 couple may represent an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.