DK
D. Kerr
Author with expertise in Advancements in Lung Cancer Research
University of California, San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, Berkeley
+ 4 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
37
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells

Moiez Ali et al.Mar 31, 2022
+14
H
M
M
Residual cancer cells that survive drug treatments with targeted therapies act as a reservoir from which eventual resistant disease emerges. Although there is great interest in therapeutically targeting residual cells, efforts are hampered by our limited knowledge of the vulnerabilities existing in this cell state. Here, we report that diverse oncogene-targeted therapies, including inhibitors of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), KRAS, and BRAF, induce DNA double-strand breaks and, consequently, ataxia-telangiectasia mutated (ATM)-dependent DNA repair in oncogene-matched residual tumor cells. This DNA damage response, observed in cell lines, mouse xenograft models, and human patients, is driven by a pathway involving the activation of caspases 3 and 7 and the downstream caspase-activated deoxyribonuclease (CAD). CAD is, in turn, activated through caspase-mediated degradation of its endogenous inhibitor, ICAD. In models of EGFR mutant non-small cell lung cancer (NSCLC), tumor cells that survive treatment with small-molecule EGFR-targeted therapies are thus synthetically dependent on ATM, and combined treatment with an ATM kinase inhibitor eradicates these cells in vivo. This led to more penetrant and durable responses in EGFR mutant NSCLC mouse xenograft models, including those derived from both established cell lines and patient tumors. Last, we found that rare patients with EGFR mutant NSCLC harboring co-occurring, loss-of-function mutations in ATM exhibit extended progression-free survival on first generation EGFR inhibitor therapy relative to patients with EGFR mutant NSCLC lacking deleterious ATM mutations. Together, these findings establish a rationale for the mechanism-based integration of ATM inhibitors alongside existing targeted therapies.
20

A focal adhesion kinase-YAP signaling axis drives drug tolerant persister cells and residual disease in lung cancer

Franziska Haderk et al.Oct 24, 2023
+30
L
C
F
Abstract Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant tumor cells which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.
20
Paper
Citation12
0
Save
0

Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling

Sebastijan Hobor et al.Sep 6, 2024
+292
D
A
S
Abstract The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53 , are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53 -mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.
0

Neoadjuvant Osimertinib for the Treatment of Stage I-IIIA Epidermal Growth Factor Receptor–Mutated Non–Small Cell Lung Cancer: A Phase II Multicenter Study

Collin Blakely et al.Sep 17, 2024
+21
M
T
C
PURPOSE To assess the safety and efficacy of the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor osimertinib as neoadjuvant therapy in patients with surgically resectable stage I-IIIA EGFR-mutated non–small cell lung cancer (NSCLC). PATIENTS AND METHODS This was a multi-institutional phase II trial of neoadjuvant osimertinib for patients with surgically resectable stage I-IIIA (American Joint Committee on Cancer [AJCC] V7) EGFR-mutated (L858R or exon 19 deletion) NSCLC (ClinicalTrials.gov identifier: NCT03433469 ). Patients received osimertinib 80 mg orally once daily for up to two 28-day cycles before surgical resection. The primary end point was major pathological response (MPR) rate. Secondary safety and efficacy end points were also assessed. Exploratory end points included pretreatment and post-treatment tumor mutation profiling. RESULTS A total of 27 patients were enrolled and treated with neoadjuvant osimertinib for a median 56 days before surgical resection. Twenty-four (89%) patients underwent subsequent surgery; three (11%) patients were converted to definitive chemoradiotherapy. The MPR rate was 14.8% (95% CI, 4.2 to 33.7). No pathological complete responses were observed. The ORR was 52%, and the median DFS was 40.9 months. One treatment-related serious adverse event (AE) occurred (3.7%). No patients were unable to undergo surgical resection or had surgery delayed because of an AE. The most common co-occurring tumor genomic alterations were in TP53 (42%) and RBM10 (21%). CONCLUSION Treatment with neoadjuvant osimertinib in surgically resectable (stage IA-IIIA, AJCC V7) EGFR-mutated NSCLC did not meet its primary end point for MPR rate. However, neoadjuvant osimertinib did not lead to unanticipated AEs, surgical delays, nor result in a significant unresectability rate.
0
Citation1
0
Save
4

Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR mutant lung cancer

Shigeki Nanjo et al.Oct 24, 2023
+16
N
W
S
Abstract Molecularly targeted cancer therapy has improved outcomes for cancer patients with targetable oncoproteins, such as mutant epidermal growth factor receptor ( EGFR ) in lung cancer. Yet, long-term patient survival remains limited because treatment responses are typically incomplete. One potential explanation for the lack of complete and durable responses is that oncogene-driven cancers with activating mutations in the EGFR often harbor additional co-occurring genetic alterations. This hypothesis remains untested for most genetic alterations that co-occur with mutant EGFR . Here, we report the functional impact of inactivating genetic alteration of the mRNA splicing factor RBM10 that co-occur with mutant EGFR . RBM10 deficiency decreased EGFR inhibitor efficacy in patient-derived EGFR mutant tumor models. RBM10 modulated mRNA alternative splicing of the mitochondrial apoptotic regulator Bcl-x to regulate tumor cell apoptosis during treatment. Genetic inactivation of RBM10 diminished EGFR inhibitor-mediated apoptosis by decreasing the ratio of Bcl-xS-(pro-apoptotic)-to-Bcl-xL(anti-apoptotic) Bcl-x isoforms. RBM10 deficiency was a biomarker of poor response to EGFR inhibitor treatment in clinical samples. Co-inhibition of Bcl-xL and mutant EGFR overcame resistance induced by RBM10 deficiency. This study sheds light on the role of co-occurring genetic alterations, and on the impact of splicing factor deficiency in the modulation of sensitivity to targeted kinase inhibitor cancer therapy.
1

Predicting patient treatment response and resistance via single-cell transcriptomics of their tumors

Sanju Sinha et al.Oct 24, 2023
+11
S
R
S
Abstract Tailoring the best treatments to cancer patients is an important open challenge. Here, we build a precision oncology data science and software framework for PER sonalized single- C ell E xpression-based P lanning for T reatments In On cology (PERCEPTION). Our approach capitalizes on recently published matched bulk and single-cell transcriptome profiles of large-scale cell-line drug screens to build treatment response models from patients’ single-cell (SC) tumor transcriptomics. First, we show that PERCEPTION successfully predicts the response to monotherapy and combination treatments in screens performed in cancer and patient-tumor-derived primary cells based on SC-expression profiles. Second, it successfully stratifies responders to combination therapy based on the patients’ tumor’s SC-expression in two very recent multiple myeloma and breast cancer clinical trials. Thirdly, it captures the development of clinical resistance to five standard tyrosine kinase inhibitors using tumor SC-expression profiles obtained during treatment in a lung cancer patients’ cohort. Notably, PERCEPTION outperforms state-of-the-art bulk expression-based predictors in all three clinical cohorts. In sum, this study provides a first-of-its-kind conceptual and computational method that is predictive of response to therapy in patients, based on the clonal SC gene expression of their tumors.
0

CDK4 and CDK6 upregulation promotes DNA replication stress, genomic instability and resistance to EGFR targeted therapy in lung cancer

Beatrice Gini et al.May 27, 2024
+10
W
P
B
Abstract Genetic interactions impact both normal human physiology and human diseases, such as cancer. Here, we study genetic interactions through the lens of human lung cancers driven by oncogenic forms of the epidermal growth factor receptor (EGFR), which we and others previously showed harbor a rich landscape of genetic co-alterations and potential genetic interactions. Among the most common genetic co-alterations with oncogenic EGFR are genomic amplifications of cell cycle regulators CDK4 or CDK6 , which have been implicated in EGFR inhibitor clinical resistance, although the mechanism underlying this effect is not well characterized. We show that CDK4/6 upregulation overcomes EGFR inhibitor-induced G1/S cell cycle arrest in association with increased replication stress, DNA damage and genomic instability. These biological effects arising in CDK4/6 upregulated tumors help to enable resistance to EGFR targeted therapies through established genetic resistance mechanisms. Combinatorial EGFR and CDK4/6 inhibitor treatment alleviated genomic instability and EGFR inhibitor resistance in patient-derived preclinical models. This study reveals mechanistic and clinical impacts of the genetic interaction between oncogenic EGFR and CDK4/6 co-alterations in human lung cancer.
47

Targeted cancer therapy induces APOBEC fuelling the evolution of drug resistance

Manasi Mayekar et al.Oct 24, 2023
+45
N
D
M
Introductory paragraph The clinical success of targeted cancer therapy is limited by drug resistance that renders cancers lethal in patients 1-4 . Human tumours can evolve therapy resistance by acquiring de novo genetic alterations and increased heterogeneity via mechanisms that remain incompletely understood 1 . Here, through parallel analysis of human clinical samples, tumour xenograft and cell line models and murine model systems, we uncover an unanticipated mechanism of therapy-induced adaptation that fuels the evolution of drug resistance. Targeted therapy directed against EGFR and ALK oncoproteins in lung cancer induced adaptations favoring apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC)-mediated genome mutagenesis. In human oncogenic EGFR -driven and ALK -driven lung cancers and preclinical models, EGFR or ALK inhibitor treatment induced the expression and DNA mutagenic activity of APOBEC3B via therapy-mediated activation of NF-κB signaling. Moreover, targeted therapy also mediated downregulation of certain DNA repair enzymes such as UNG2, which normally counteracts APOBEC-catalyzed DNA deamination events. In mutant EGFR -driven lung cancer mouse models, APOBEC3B was detrimental to tumour initiation and yet advantageous to tumour progression during EGFR targeted therapy, consistent with TRACERx data demonstrating subclonal enrichment of APOBEC-mediated mutagenesis. This study reveals how cancers adapt and drive genetic diversity in response to targeted therapy and identifies APOBEC deaminases as future targets for eliciting more durable clinical benefit to targeted cancer therapy.