KN
Kiyotaka Nakagawa
Author with expertise in Mechanisms and Implications of Ferroptosis in Cancer
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
1,138
h-index:
54
/
i10-index:
210
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A non-canonical vitamin K cycle is a potent ferroptosis suppressor

Eikan Mishima et al.Aug 3, 2022
Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.
0

Food-Grade Mulberry Powder Enriched with 1-Deoxynojirimycin Suppresses the Elevation of Postprandial Blood Glucose in Humans

Toshiyuki Kimura et al.Jun 8, 2007
Mulberry 1-deoxynojirimycin (DNJ), a potent glucosidase inhibitor, has been hypothesized to be beneficial for the suppression of abnormally high blood glucose levels and thereby prevention of diabetes mellitus. However, DNJ contents in commercial mulberry products were as low as about 0.1% (100 mg/100 g of dry product), implying that the bioavailability of DNJ might not be expected. We carried out studies in two directions: (1) production of food-grade mulberry powder containing a maximally high DNJ content; (2) determination of the optimal dose of the DNJ-enriched powder for the suppression of the postprandial blood glucose through clinical trials. The following method was used: (1) DNJ concentrations in mulberry leaves from different cultivars, harvest seasons, and leaf locations were determined using hydrophilic interaction chromatography with evaporative light scattering detection. (2) Healthy volunteers received 0, 0.4, 0.8, and 1.2 g of DNJ-enriched powder (corresponding to 0, 6, 12, and 18 mg of DNJ, respectively), followed by 50 g of sucrose. Before and 30−180 min after the DNJ/sucrose administration, plasma glucose and insulin were determined. The following results were obtained: (1) Young mulberry leaves taken from the top part of the branches in summer contained the highest amount of DNJ. After optimization of the harvesting and drying processes for young mulberry leaves (Morus alba L. var. Shin ichinose), DNJ-enriched powder (1.5%) was produced. (2) A human study indicated that the single oral administration of 0.8 and 1.2 g of DNJ-enriched powder significantly suppressed the elevation of postprandial blood glucose and secretion of insulin, revealing the physiological impact of mulberry DNJ (effective dose and efficacy in humans). This study suggests that the newly developed DNJ-enriched powder can be used as a dietary supplement for preventing diabetes mellitus. Keywords: 1-Deoxynojirimycin; HILIC-ELSD; mulberry leaves; Morus spp.; diabetes prevention
0

Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure

Naoya Yamada et al.Feb 24, 2020
Acetaminophen (APAP) overdose is a common cause of drug-induced acute liver failure. Although hepatocyte cell death is considered to be the critical event in APAP-induced hepatotoxicity, the underlying mechanism remains unclear. Ferroptosis is a newly discovered type of cell death that is caused by a loss of cellular redox homeostasis. As glutathione (GSH) depletion triggers APAP-induced hepatotoxicity, we investigated the role of ferroptosis in a murine model of APAP-induced acute liver failure. APAP-induced hepatotoxicity (evaluated in terms of ALT, AST, and the histopathological score), lipid peroxidation (4-HNE and MDA), and upregulation of the ferroptosis maker PTGS2 mRNA were markedly prevented by the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1). Fer-1 treatment also completely prevented mortality induced by high-dose APAP. Similarly, APAP-induced hepatotoxicity and lipid peroxidation were prevented by the iron chelator deferoxamine. Using mass spectrometry, we found that lipid peroxides derived from n-6 fatty acids, mainly arachidonic acid, were elevated by APAP, and that auto-oxidation is the predominant mechanism of APAP-derived lipid oxidation. APAP-induced hepatotoxicity was also prevented by genetic inhibition of acyl-CoA synthetase long-chain family member 4 or α-tocopherol supplementation. We found that ferroptosis is responsible for APAP-induced hepatocyte cell death. Our findings provide new insights into the mechanism of APAP-induced hepatotoxicity and suggest that ferroptosis is a potential therapeutic target for APAP-induced acute liver failure.
1

DHCR7 as a novel regulator of ferroptosis in hepatocytes

Naoya Yamada et al.Jun 15, 2022
Abstract Recent evidence indicates that ferroptosis is implicated in the pathophysiology of various liver diseases; however, the mechanism of ferroptosis regulation in the liver is poorly understood. Here, using the whole-genome screening approach, we identified 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a novel regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppressed lipid peroxidation and ferroptosis in human hepatocellular carcinoma Huh-7 cells. DHCR7 inhibition increased its substrate, 7-dehydrocholesterol (7-DHC), and extrinsic 7-DHC supplementation in turn suppressed ferroptosis. On the other hand, cholesterol deprivation had no effect on ferroptosis. A 7-DHC-derived oxysterol metabolite, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), was increased by a ferroptosis inducer RSL-3 in DHCR7-deficient cells, suggesting that the ferroptosis-suppressive effect of DHCR7 inhibition was driven by intracellular 7-DHC as a radical scavenger. While extrinsic 7-DHC supplementation suppressed ferroptosis in various cancer cells, pharmacological DHCR7 inhibition by AY9944 showed cell-type specific effects, which could be explained by high DHCR7 expression in Huh-7 cells. We further showed that AY9944 suppressed ferroptosis in murine primary hepatocytes in vitro and systemic administration of AY9944 inhibited hepatic ischemia-reperfusion injury in vivo . These findings provide new insights into the regulatory mechanism of liver ferroptosis and suggest that DHCR7 inhibition is a potential therapeutic option for ferroptosis-related liver diseases.
1
Citation7
0
Save
Load More