LF
Lonike Faes
Author with expertise in Atomic Magnetometry Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC

Lonike Faes et al.Jan 25, 2024
Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal to noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise; the dominant contributing noise component in high resolution fMRI. NORDIC PCA is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. As investigating auditory functional responses poses unique challenges, we anticipated that the benefit of this technique would be especially pronounced. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we also observed a reduction in the average response amplitude (percent signal), which may suggest that a small amount of signal was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
16

Cerebral blood volume sensitive layer-fMRI in the human auditory cortex at 7 Tesla: Challenges and capabilities

Lonike Faes et al.Aug 3, 2022
Abstract The development of ultra high field (UHF) fMRI signal readout strategies and contrasts has led to the possibility of imaging the human brain in vivo and non-invasively at increasingly higher spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition method with increasing popularity is the cerebral blood volume (CBV) sensitive sequence named vascular space occupancy (VASO). This approach has been shown to be mostly sensitive to locally-specific changes of laminar microvasculature, without unwanted biases of trans-laminar draining veins. Until now, however, VASO has not been applied in the technically challenging cortical area of the primary auditory cortex. Here, we developed a VASO imaging protocol for auditory neuroscientific applications. We describe the main challenges we encountered and the solutions we have adopted to mitigate them. With our optimized protocol, we investigate laminar responses to sounds. Finally, as proof of concept for future investigations, we map the topographic representation of frequency preference (tonotopy) in the auditory cortex. Highlights Layer fMRI VASO in the auditory cortex is challenging due to its physiology After protocol optimization we show the applicability of VASO to the auditory cortex Topographic maps obtained with VASO respect the large-scale tonotopic organization that has previously been shown with BOLD fMRI data.
0

NORDIC denoising on VASO data

Lasse Knudsen et al.Jan 6, 2025
The use of submillimeter resolution functional magnetic resonance imaging (fMRI) is increasing in popularity due to the prospect of studying human brain activation non-invasively at the scale of cortical layers and columns. This method, known as laminar fMRI, is inherently signal-to-noise ratio (SNR)-limited, especially at lower field strengths, with the dominant noise source being of thermal origin. Furthermore, laminar fMRI is challenged with signal displacements due to draining vein effects in conventional gradient-echo blood oxygen level-dependent (BOLD) imaging contrasts. fMRI contrasts such as cerebral blood volume (CBV)-sensitive vascular space occupancy (VASO) sequences have the potential to mitigate draining vein effects. However, VASO comes along with another reduction in detection sensitivity. NOise Reduction with DIstribution Corrected (NORDIC) PCA (principal component analysis) is a denoising technique specifically aimed at suppressing thermal noise, which has proven useful for increasing the SNR of high-resolution functional data. While NORDIC has been examined for BOLD acquisitions, its application to VASO data has been limited, which was the focus of the present study. We present a preliminary analysis to evaluate NORDIC's capability to suppress thermal noise while preserving the VASO signal across a wide parameter space at 3T. For the data presented here, with a proper set of parameters, NORDIC reduced thermal noise with minimal bias on the underlying signal and preserved spatial resolution. Denoising performance was found to vary with different implementation strategies and parameter choices, for which we provide recommendations. We conclude that when applied properly, NORDIC has the potential to overcome the sensitivity limitations of laminar-specific VASO fMRI. Since very few groups currently have 3T VASO data, by sharing our analysis and code, we can compile and compare the effects of NORDIC across a broader range of acquisition parameters and study designs. Such a communal effort will help develop robust recommendations that will increase the utility of laminar fMRI at lower field strengths.