JM
Jennifer Molinet
Author with expertise in Microbial Interactions in Wine Production and Flavor
University of Santiago Chile, Millennium Science Initiative, Millennium Institute for Integrative Biology
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
330
h-index:
9
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
119

A global metagenomic map of urban microbiomes and antimicrobial resistance

David Danko et al.Jun 7, 2021
+662
E
D
D
We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.
119
Citation190
2
Save
105

The evolution, evolvability and engineering of gene regulatory DNA

Eeshit Vaishnav et al.Mar 22, 2022
+7
J
C
E
Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1–3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4–6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution. A framework for studying and engineering gene regulatory DNA sequences, based on deep neural sequence-to-expression models trained on large-scale libraries of random DNA, provides insight into the evolution, evolvability and fitness landscapes of regulatory DNA.
105
Citation138
0
Save
118

A comprehensive fitness landscape model reveals the evolutionary history and future evolvability of eukaryotic cis-regulatory DNA sequences

Eeshit Vaishnav et al.Oct 24, 2023
+7
M
C
E
Mutations in non-coding cis -regulatory DNA sequences can alter gene expression, organismal phenotype, and fitness. Fitness landscapes, which map DNA sequence to organismal fitness, are a long-standing goal in biology, but have remained elusive because it is challenging to generalize accurately to the vast space of possible sequences using models built on measurements from a limited number of endogenous regulatory sequences. Here, we construct a sequence-to-expression model for such a landscape and use it to decipher principles of cis -regulatory evolution. Using tens of millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Sacccharomyces cerevisiae , we construct a deep transformer neural network model that generalizes with exceptional accuracy, and enables sequence design for gene expression engineering. Using our model, we predict and experimentally validate expression divergence under random genetic drift and strong selection weak mutation regimes, show that conflicting expression objectives in different environments constrain expression adaptation, and find that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for detecting selective constraint on gene expression using our model and natural sequence variation, and validate it using observed cis -regulatory diversity across 1,011 yeast strains, cross-species RNA-seq from three different clades, and measured expression-to-fitness curves. Finally, we develop a characterization of regulatory evolvability, use it to visualize fitness landscapes in two dimensions, discover evolvability archetypes, quantify the mutational robustness of individual sequences and highlight the mutational robustness of extant natural regulatory sequence populations. Our work provides a general framework that addresses key questions in the evolution of cis -regulatory sequences.
118
Paper
Citation2
0
Save
0

Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for Lager brewing

Jennifer Molinet et al.Jan 30, 2024
+5
C
J
J
ABSTRACT Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new Lager yeasts and obtaining insights into the domestication process. Here, we leverage the natural genetic diversity of S. eubayanus and expand the Lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial Lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2 , SNF3 , IMA1 and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing grater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable Lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity, expands Lager beer brewing options, and deepens our knowledge of Lager yeast domestication.
12

Natural Variation in Diauxic Shift between Patagonian Saccharomyces eubayanus Strains

Jennifer Molinet et al.Oct 24, 2023
+7
P
J
J
Abstract The study of natural variation can untap novel alleles with immense value for biotechnological applications . Saccharomyces eubayanus Patagonian isolates exhibit differences in the diauxic shift between glucose and maltose, representing a suitable model to study their natural genetic variation for novel strains for brewing. However, little is known about the genetic variants and chromatin regulators responsible for these differences. Here, we show how genome-wide chromatin accessibility and gene expression differences underlie distinct diauxic shift profiles in S. eubayanus . We identified two strains with a rapid diauxic shift between glucose and maltose (CL467.1 and CBS12357) and one strain with a remarkably low fermentation efficiency and longer lag phase during diauxic shift (QC18). This is associated in the QC18 strain to lower transcriptional activity and chromatin accessibility of specific genes of maltose metabolism, and higher expression levels of glucose transporters. These differences are governed by the HAP complex, which differentially regulates gene expression depending on the genetic background. We found in the QC18 strain a contrasting phenotype to those described in S. cerevisiae , where hap411 , hap511 and cin511 knockouts significantly improved the QC18 growth rate in the glucose-maltose shift. The most profound effects were found between CIN5 allelic variants, suggesting that Cin5p could strongly activate a repressor of the diauxic shift in the QC18 strain, but not necessarily in the other strains. The differences between strains could originate from the tree host from which the strains were obtained, which might determine the sugar source preference and the brewing potential of the strain. Importance The diauxic shift has been studied in the budding yeast under laboratory conditions, however, few studies have addressed the diauxic shift between carbon sources under fermentative conditions. Here, we study the transcriptional and chromatin structure differences that explain the natural variation in fermentative capacity and efficiency during diauxic shift of natural isolates of S. eubayanus . Our results show how natural genetic variants in transcription factors impact sugar consumption preferences between strains. These variants have different effects depending on the genetic background, with a contrasting phenotype to those previously described in S. cerevisiae. Our study shows how relatively simple genetic/molecular modifications/editing in the lab can facilitate the study of natural variation of microorganisms for the brewing industry.
12
0
Save
17

Rapid selection response to ethanol inS. eubayanusemulates the domestication process under brewing conditions

Wladimir Mardones et al.Oct 24, 2023
+5
V
C
W
ABSTRACT Although the typical genomic and phenotypic changes that characterize the evolution of organisms under the human domestication syndrome represent textbook examples of rapid evolution, the molecular processes that underpin such changes are still poorly understood. Domesticated yeasts for brewing, where short generation times and large phenotypic and genomic plasticity were attained in a few generations under selection, are prime examples. To experimentally emulate the lager yeast domestication process, we created a genetically complex (panmictic) artificial population of multiple Saccharomyces eubayanus genotypes, one of the parents of lager yeast. Then we imposed a constant selection regime under a high ethanol concentration in 10 replicated populations during 260 generations (six months) and compared them with evolved controls exposed solely to glucose. Evolved populations exhibited a selection differential of 60% in growth rate in ethanol, mostly explained by the proliferation of a single lineage (CL248.1) that competitively displaced all other clones. Interestingly, the outcome does not require the entire time course of adaptation, as four lineages monopolized the culture at generation 120. Sequencing demonstrated that de novo genetic variants were produced in all evolved lines, including SNPs, aneuploidies, INDELs, and translocations. In addition, the evolved populations showed correlated responses resembling the domestication syndrome: genomic rearrangements, faster fermentation rates, lower production of phenolic-off flavors and lower volatile compound complexity. Expression profiling in beer wort revealed altered expression levels of genes related to methionine metabolism, flocculation, stress tolerance and diauxic shift, likely contributing to higher ethanol and fermentation stress tolerance in the evolved populations. Our study shows that experimental evolution can rebuild the brewing domestication process in “fast motion” in wild yeast, and also provides a powerful tool for studying the genetics of the adaptation process in complex populations.