KK
K. Kanyuka
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(73% Open Access)
Cited by:
1,971
h-index:
42
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptome and Metabolite Profiling of the Infection Cycle ofZymoseptoria triticion Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle Definition

J. Rudd et al.Jan 16, 2015
Abstract The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
0
Citation286
0
Save
0

An array ofZymoseptoria triticieffectors suppress plant immune responses

Elisha Thynne et al.Mar 13, 2024
Abstract Zymoseptoria tritici is the most economically significant fungal pathogen of wheat in Europe. However, despite the importance of this pathogen, the molecular interactions between pathogen and host during infection are not well understood. Herein, we describe the use of two libraries of cloned Z. tritici effectors that were screened to identify effector candidates with putative pathogen associated molecular pattern (PAMP) triggered immunity (PTI)-suppressing activity. The effectors from each library were transiently expressed in Nicotiana benthamiana , and expressing leaves were treated with bacterial or fungal PAMPs to assess the effectors’ ability to suppress reactive oxygen species (ROS) production. From these screens, numerous effectors were identified with PTI-suppressing activity. In addition, some effectors were able to suppress cell death responses induced by other Z. tritici secreted proteins. We used structural prediction tools to predict the putative structures of all of the Z. tritici effectors, and used these predictions to examine whether there was enrichment of specific structural signatures among the PTI-suppressing effectors. From among the libraries, multiple members of the killer protein-like 4 (KP4) and killer protein-like 6 (KP6) effector families were identified as PTI-suppressors. This observation is intriguing, as these protein families were previously associated with antimicrobial activity rather than virulence or host manipulation. This data provides mechanistic insight into immune suppression by Z. tritici during infection, and suggests that similar to biotrophic pathogens, this fungus relies on a battery of secreted effectors to suppress host immunity during early phases of colonisation.
0
Citation2
0
Save
1

Remarkable recent changes in genetic diversity of the avirulence geneAvrStb6in global populations of the wheat pathogenZymoseptoria tritici

Christopher Stephens et al.Sep 18, 2020
SUMMARY Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici , is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z. tritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 alleles present in historic Z. tritici isolate collections, with up to ~ 18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of alleles allowing evasion of Stb6 -mediated resistance in more recent Z. tritici populations. Here we show, using targeted re-sequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world between 2013–2017. However, in contrast to the data from studies of historic isolates, our study revealed a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Z. tritici isolates. Moreover, a remarkably small number of alleles, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6- containing wheat, were found to predominate among modern Z. tritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Z. tritici to sexually reproduce on resistant hosts, AvrStb6 avirulence alleles tend to be eliminated in subsequent populations.
1
Citation1
0
Save
0

The vesicular trafficking system component MIN7 is required for minimizing Fusarium graminearum infection

Ana Wood et al.Mar 18, 2020
Plants have developed intricate defense mechanisms, referred to as innate immunity, to defend themselves against a wide range of pathogens. Plants often respond rapidly to pathogen attack by the synthesis and delivery of various antimicrobial compounds, proteins and small RNA in membrane vesicles to the primary infection sites. Much of the evidence regarding the importance of vesicular trafficking in plant-pathogen interactions comes from the studies involving model plants whereas this process is relatively understudied in crop plants. Here we assessed whether the vesicular trafficking system components previously implicated in immunity in Arabidopsis thaliana play a role in the interaction with Fusarium graminearum, a fungal pathogen notoriously famous for its ability to cause Fusarium head blight (FHB) disease in wheat. Among the analyzed vesicular trafficking mutants, two independent T-DNA insertion mutants in the AtMin7 gene displayed a markedly enhanced susceptibility to F. graminearum. Earlier studies identified this gene, encoding an ARF-GEF protein, as a target for the HopM1 effector of the bacterial pathogen Pseudomonas syringae pv. tomato, which destabilizes AtMIN7 leading to its degradation and weakening host defenses. To test whether this key vesicular trafficking component may also contribute to defense in crop plants, we identified the candidate TaMin7 genes in wheat and knocked-down their expression through Virus induced gene silencing. Wheat plants in which TaMIN7 were silenced displayed significantly more FHB disease. This suggests that disruption of MIN7 function in both model and crop plants compromises the trafficking of innate immunity signals or products resulting in hyper-susceptibility to various pathogens.
0

Characterisation of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici

Graeme Kettles et al.Apr 24, 2017
The fungus Zymoseptoria tritici is the causal agent of Septoria Tritici Blotch (STB) disease of wheat leaves. Z. tritici secretes many functionally uncharacterised effector proteins during infection. Here we characterised a secreted ribonuclease (Zt6) with an unusual biphasic expression pattern. Transient expression systems were used to characterise Zt6, and mutants thereof, in both host and non-host plants. Cell-free protein expression systems monitored impact of Zt6 protein on functional ribosomes, and in vitro assays of cells treated with recombinant Zt6 determined toxicity against bacteria, yeasts and filamentous fungi. We demonstrated that Zt6 is a functional ribonuclease and that phytotoxicity is dependent on both the presence of a 22-amino acid N-terminal loop region and its catalytic activity. Zt6 selectively cleaves both plant and animal rRNA species, and is toxic to wheat, tobacco, bacterial and yeast cells but not to Z. tritici itself. Zt6 is the first Z. tritici effector demonstrated to have a likely dual functionality. The expression pattern of Zt6 and potent toxicity towards microorganisms suggests that whilst it may contribute to the execution of wheat cell death, it is also likely to have an important secondary function in antimicrobial competition and niche protection.
0

Analysis of small RNA silencing in Zymoseptoria tritici - wheat interactions

Graeme Kettles et al.Dec 19, 2018
Cross-kingdom small RNA (sRNA) silencing has recently emerged as a mechanism facilitating fungal colonization and disease development. Here we characterized RNAi pathways in Zymoseptoria tritici, a major fungal pathogen of wheat, and assessed their contribution to pathogenesis. Computational analysis of fungal sRNA and host mRNA sequencing datasets was used to define the global sRNA populations in Z. tritici and predict their mRNA targets in wheat. 389 in planta-induced sRNA loci were identified. sRNAs generated from some of these loci were predicted to target wheat mRNAs including those potentially involved in pathogen defense. However, molecular approaches failed to validate targeting of selected wheat mRNAs by fungal sRNAs. Mutant strains of Z. tritici carrying deletions of genes encoding key components of RNAi such as Dicer-like (DCL) and Argounate (AGO) proteins were generated, and virulence bioassays suggested that these are dispensable for full infection of wheat. Nonetheless, our results did suggest the existence of non-canonical DCL-independent pathway(s) for sRNA biogenesis in Z. tritici. dsRNA targeting essential fungal genes applied in vitro or generated from an RNA virus vector in planta in a procedure known as HIGS (Host-Induced Gene Silencing) was ineffective in preventing Z. tritici growth or disease. We also demonstrated that Z. tritici is incapable of dsRNA uptake. Collectively, our data suggest that RNAi approaches for gene function analyses in this fungal species and potentially also as a control measure may not be as effective as has been demonstrated for some other plant pathogenic fungi.
0

Virus-mediated transient expression techniques enable genetic modification of Alopecurus myosuroides

Macarena Mellado-Sánchez et al.Jan 29, 2020
Abstract Even though considerable progress has been made in weed ecology, weed molecular biology has been hindered by an inability to genetically manipulate weeds. Genetic manipulation is essential to demonstrate a causative relationship between genotype and phenotype. Herein we demonstrate that virus-mediated transient expression techniques developed for other monocots can be used in black-grass ( Alopecurus myosuroides ) for loss- and gain-of-function studies. We not only use virus induced gene silencing (VIGS) to create the black-grass exhibiting reduced PHYTOENE DESATURASE expression and virus-mediated overexpression (VOX) to drive GREEN FLUORESCENT PROTEIN, we demonstrate these techniques are applicable to testing hypotheses related to herbicide resistance in black-grass. We use VIGS to demonstrate that AmGSTF1 is necessary for the resistant biotype Peldon to survive fenoxaprop application and show the heterologous expression of the bialaphos resistance gene with VOX is sufficient to confer resistance to an otherwise lethal dose of glufosinate. Black-grass is the most problematic weed for winter-cereal farmers in the UK and Western Europe as it has rapidly evolved adaptions that allow it to effectively avoid current integrated weed management practices. Black-grass also reduces yields and therefore directly threatens food security and productivity. Novel disruptive technologies which mitigate resistance evolution and enable better control over this pernicious weed are therefore required. These virus-mediated protocols offer a step change in our ability to alter genes of interest under controlled laboratory conditions and therefore to gain a molecular-level understanding of how black-grass can survive in the agri-environment. One Sentence Summary Virus-mediated transient expression techniques create loss- and gain-of-function mutations in black-grass and show causation between specific genotypes and measurable changes in herbicide resistance.
Load More