CC
Cláudio Cardoso-Silva
Author with expertise in Technologies for Biofuel Production from Biomass
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
1
h-index:
14
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Taxonomically Restricted Genes are Associated with Responses to Biotic and Abiotic Stresses in Sugarcane (Saccharum spp.)

Cláudio Cardoso-Silva et al.May 1, 2022
ABSTRACT Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological function difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements, and whole genome duplication, occurred in the Saccharum group, which may have contributed to the origin and diversification of OGs in the sugarcane genome. Here, we identified and characterized OGs in sugarcane, examined their expression profiles across tissues and genotypes, and investigated their regulation under varying conditions. We identified 319 OGs in the Saccharum spontaneum genome without detected homology to protein-coding genes in green plants, except those belonging to Saccharinae. Transcriptomic analysis showed 288 sugarcane OGs with detectable expression levels in at least one tissue or genotype. We observed similar expression patterns of OGs in sugarcane genotypes originating from the closest geographical locations. We also observed tissue-specific expression of some OGs, possibly indicating a complex regulatory process for maintaining diverse functional activity of these genes across sugarcane tissues and genotypes. Sixty-six OGs were differentially expressed under stress conditions, especially cold and osmotic stresses. Gene co-expression network and functional enrichment analyses suggested that sugarcane OGs may be involved in several biological mechanisms, including stimulus response and defence mechanisms. These findings provide a valuable genomic resource for sugarcane researchers, especially those interested in selecting stress-responsive genes.
8
Citation1
0
Save
0

Multiomic analysis of genes related to oil traits in legumes provide insights into lipid metabolism and oil richness in soybean

Dayana Turquetti-Moraes et al.May 5, 2024
Soybean (Glycine max) and common bean (Phaseolus vulgaris) diverged approximately 19 million years ago. While these species share a whole-genome duplication (WGD), the Glycine lineage experienced a second, independent WGD. Despite the significance of these WGDs, their impact on gene families related to oil-traits remains poorly understood. Here, we report an in-depth investigation of oil-related gene families in soybean, common bean, and twenty-eight other legume species. We adopted a systematic approach that included transcriptome and co-expression analysis, identification of orthologous groups, gene duplication modes and evolutionary rates, and family expansions and contractions. We curated a list of oil candidate genes and found that 91.5% of the families containing these genes expanded in soybean in comparison to common bean. Notably, we observed an expansion of triacylglycerol (TAG) biosynthesis (~3:1) and an erosion of TAG degradation (~1.4:1) families in soybean in comparison to common bean. In addition, TAG degradation genes were two-fold more expressed in common bean than in soybean, suggesting that oil degradation is also important for the sharply contrasting seed oil contents in these species. We found 17 transcription factor hub genes that are likely regulators of lipid metabolism. Finally, we inferred expanded and contracted families and correlated these patterns with oil content found in different legume species. In summary, our results do not only shed light on the evolution of oil metabolism genes in soybean, but also present multifactorial evidence supporting the prioritization of candidates for crop improvement.
0

Genetic variation in a complex polyploid: unveiling the dynamic allelic features of sugarcane

Danilo Sforça et al.Jul 3, 2018
Background: Sugarcane (Saccharum spp.) is highly polyploid and aneuploid. Modern cultivars are derived from hybridization between S. officinarum and S. spontaneum. This combination results in a genome exhibiting variable ploidy among different loci, a huge genome size (approximately 10 Gb) and a high content of repetitive regions. Gene expression mechanisms are poorly understood in these cultivars. An approach using genomic, transcriptomic and genetic mapping can improve our knowledge of the behavior of genetics in sugarcane. Results: The hypothetical HP600 and centromere protein C (CENP-C) genes from sugarcane were used to elucidate the allelic expression and genomic and genetic behavior of this complex polyploid. The genomically side-by-side genes HP600 and CENP-C were found in two different homeologous chromosome groups with ploidies of eight and ten. The first region (Region01) was a Sorghum bicolor ortholog with all haplotypes of HP600 and CENP-C expressed, but HP600 exhibited an unbalanced haplotype expression. The second region (Region02) was a scrambled sugarcane sequence formed from different noncollinear genes containing duplications of HP600 and CENP-C (paralogs). This duplication occurred before the Saccharum genus formation and after the separation of sorghum and sugarcane, resulting in a nonexpressed HP600 pseudogene and a recombined fusion version of CENP-C and orthologous gene Sobic.003G299500 with at least two chimerical gene haplotypes expressed. The genetic map construction supported the difficulty of mapping markers located in duplicated regions of complex polyploid genomes. Conclusion: All these findings describe a low synteny region in sugarcane, formed by events occurring in all members of the Saccharum genus. Additionally, evidence of duplicated and truncate gene expression and the behavior of genetic markers in a duplicated region was found. Thus, we describe the complexity involved in sugarcane genetics and genomics and allelic dynamics, which can be useful for understanding the complex polyploid genome.
0

Integrative Genomic Analysis for the Bioprospection of Regulators and Accessory Enzymes Associated with Cellulose Degradation in a Filamentous Fungus (Trichoderma harzianum)

Jaire Filho et al.Aug 21, 2019
Background: Unveiling fungal genome structure and function reveals the potential biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing fungus. We studied the genomic regions in T. harzianum IOC3844 containing CAZyme genes, transcription factors and transporters. Results: We used bioinformatics tools to mine the T. harzianum genome for potential genomics, transcriptomics, and exoproteomics data and coexpression networks. The DNA was sequenced by PacBio SMRT technology for multi-omics data analysis and integration. In total, 1676 genes were annotated in the genomic regions analyzed; 222 were identified as CAZymes in T. harzianum IOC3844. When comparing transcriptome data under cellulose or glucose conditions, 114 genes were differentially expressed in cellulose, with 51 CAZymes. CLR2, a transcription factor physically and phylogenetically conserved in T. harzianum spp., was differentially expressed under cellulose conditions. The genes induced/repressed under cellulose conditions included those important for plant biomass degradation, including CIP2 of the CE15 family and a copper-dependent LPMO of the AA9 family. Conclusions: Our results provide new insights into the relationship between genomic organization and hydrolytic enzyme expression and regulation in T. harzianum IOC3844. Our results can improve plant biomass degradation, which is fundamental for developing more efficient strains and/or enzymatic cocktails for the production of hydrolytic enzymes.
0

Identifying Candidate Genes for Sugar Accumulation in Sugarcane Cultivars: From a Syntenic Genomic Region to a Gene Coexpression Network

Marina Martins et al.May 12, 2024
Abstract Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation. One successful strategy for identifying candidate genes linked to agronomic traits, particularly those associated with sugar accumulation, leverages synteny and potential collinearity with related species. In this study, we explored synteny between sorghum and sugarcane. Genes from a sorghum Brix QTL were used to screen bacterial artificial chromosome (BAC) libraries from two Brazilian sugarcane varieties (IACSP93-3046 and SP80-3280). The entire region was successfully recovered, confirming synteny and collinearity between the species. Manual annotation identified 51 genes in the hybrid varieties that were subsequently confirmed to be present in Saccharum spontaneum . To identify candidate genes for sugar accumulation, this study employed a multifaceted approach, including retrieving the genomic region of interest, performing gene-by-gene analysis, analyzing RNA-seq data of internodes from Saccharum officinarum and S. spontaneum accessions, constructing a coexpression network to examine the expression patterns of genes within the studied region and their neighbors, and finally identifying differentially expressed genes (DEGs). This comprehensive approach led to the discovery of three candidate genes potentially involved in sugar accumulation: an ethylene-responsive transcription factor (ERF), an ABA 8’-hydroxylase, and a prolyl oligopeptidase (POP). These findings could be valuable for identifying additional candidate genes for other important agricultural traits and directly targeting candidate genes for further work in molecular breeding.
12

The sugarcane and sorghum kinomes: insights into evolutionary expansion and diversification

Alexandre Aono et al.Sep 16, 2020
Abstract The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, which were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between these species, this study offers insights about Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq, identifying significant similarities between Sbi and Ssp. Moreover, through coexpression networks, we inferred a core structure of kinase interactions with specific key elements. This study is the first to categorize the allele specificity of a kinome and provides a wide reservoir of molecular and genetic information, enhancing the understanding of the evolutionary history of Sbi and Ssp PKs. Highlight This study describes the catalog of kinase gene family in Saccharum spontaneum and Sorghum bicolor , providing a reservoir of molecular features and expression patterns based on RNA-Seq and co-expression networks.
12
0
Save